数学基础第二天

介绍

对于Hissian矩阵是正定的,在这一点是整个范围内的最小值,y在各个方向的二阶导数都是>0的
对于Hissian矩阵是负定的,在这一点是整个范围内的最大值,y在各个方向的二阶导数都是<0的,

对于Hissian矩阵是不定的,y沿某些方向是上升的,沿另一些方向是下降的
对于有条件的极值,用拉格朗日乘数法

多元函数

从整个范围来看,不是单单从某个方向来看是否连续

偏导数

各个方向的偏导都存在,不一定连续,在点处极限不存在

方向导数

方向导数在这里插入图片描述

当偏导数>0时,方向导数可以是正的,可以是负的
图在这里插入图片描述
图1的斜线是偏导数,在图示点处,沿着x轴正方向走,偏导数是正的,沿着x轴负方向走,偏导数是负的,图2的斜线的正向或负向是方向导数

课程中最后无论从x轴正方向还是负方向走,都是1,有偏导数的话负方向应该是-1,所以没有偏导数

可微

函数在个方向上的变化用偏导数和方向导数不足以描述
在每一个方向的偏导数都连续,可微,偏导说的是某一个方向上的变化率,可微说的是在n个方向上的变化率加和,

梯度

在一个点处可微,梯度可以控制在各个方向上的变化率,梯度是f沿着各个方向上的变化。
Jacobi矩阵,是函数矩阵,各个函数的梯度组成的矩阵,在多元函数的积分和对应的行列式中用的比较多,
梯度,grad, grad(f+g)=grad(f)*f+grad(g)*f

链式法则

Hissian矩阵

f(x_0,x_1,…,x_n)在向量x_0处取极值,梯度在向量x_0处是0向量。
梯度在向量x_0处是0向量,可能是驻点

拉格朗日乘数法

隐函数定理
拉格朗日乘数法举例:
f(x,y,z)=x2+y2+z2
约束条件:g_1(x,y,z)=x+y+z-1=c1
g_2(x,y,z)=x-y=c2
拉格朗日函数为:
L(x,y,z, λ1, λ2)=f(x,y,z)- λ1(g_1(x,y,z)-c1)-λ2(g_2(x,y,z)-c2)
=x2+y2+z2-λ1(x+y+z-1-c1)-λ2(x-y-c2)
x,y,z为实数,c1,c2为常数,这里假设c1,c2都为0
= x^2 + y^2 + z^2 - λ1(x + y + z - 1) - λ2(x - y)
然后,对L(x, y, z, λ1, λ2)分别对x、y、z、λ1和λ2求偏导,并令它们等于零:

∂L/∂x = 2x - λ1 - λ2 = 0
∂L/∂y = 2y - λ1 + λ2 = 0
∂L/∂z = 2z - λ1 = 0
∂L/∂λ1 = -(x + y + z - 1) = 0
∂L/∂λ2 = -(x - y) = 0

解上述方程组,我们可以得到以下结果:

x = 1/2
y = 1/4
z = 1/4
λ1 = 3/2
λ2 = 1/2

因此,该三元函数在约束条件下的最大值为:

f(1/2, 1/4, 1/4) = (1/2)^2 + (1/4)^2 + (1/4)^2 = 5/16

这里,λ1和λ2的值分别为3/2和1/2,表示在两个约束条件下,目标函数最大值的增加速度为正。

### 解决 PP-OCRv4 出现的错误 当遇到 `WARNING: The pretrained params backbone.blocks2.0.dw_conv.lab.scale not in model` 这样的警告时,这通常意味着预训练模型中的某些参数未能匹配到当前配置下的模型结构中[^2]。 对于此问题的一个有效解决方案是采用特定配置文件来适配预训练权重。具体操作方法如下: 通过指定配置文件 `ch_PP-OCRv4_det_student.yml` 并利用已有的最佳精度预训练模型 (`best_accuracy`) 来启动训练过程可以绕过上述不兼容的问题。执行命令如下所示: ```bash python3 tools/train.py -c configs/det/ch_PP-OCRv4/ch_PP-OCRv4_det_student.yml ``` 该方案不仅解决了参数缺失带来的警告,还能够继续基于高质量的预训练成果进行微调,从而提升最终检测效果。 关于蒸馏的概念,在机器学习领域内指的是将大型复杂网络(teacher 模型)的知识迁移到小型简单网络(student 模型)。这里 student 和 teacher 的关系是指两个不同规模或架构的神经网络之间的指导与被指导的关系;其中 teacher 已经经过充分训练并具有良好的性能,而 student 则试图模仿前者的行为模式以达到相似的效果但保持更高效的计算特性。 至于提到的 `Traceback` 错误信息部分,由于未提供具体的跟踪堆栈详情,难以给出针对性建议。不过一般而言,这报错往往涉及代码逻辑错误或是环境配置不当等问题。为了更好地帮助定位和解决问题,推荐记录完整的异常日志,并仔细检查最近修改过的代码片段以及确认依赖库版本的一致性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值