【Caffe 及 应用实例】
文章平均质量分 89
haoji007
机器学习爱好者
展开
-
数据标注工具CVAT教程
目录0. CVAT链接1. 标注图(以旋转框为例)导出可视化效果2. docker-容器安装cvat3. cvat标注教程3.1 支持的类型3.2 标注流程4. 类似paddle-OCR文本检测-文本识别 标注流程0. CVAT链接cvat:https://github.com/openvinotoolkit/cvat1. 标...转载 2021-07-29 17:07:48 · 11120 阅读 · 0 评论 -
Python破解验证码,只要15分钟就够了!
让我们一起攻破世界上最流行的WordPress的验证码插件每个人都讨厌验证码——在你被允许访问一个网站之前,你总被要求输入那些烦人的图像中所包含的文本。验证码被设计成,以验证你是一个真正的人的方式,来防止电脑自动填写表单。但是随着深度学习和计算机视觉的兴起,它们现在往往很容易被攻破。我在读Adrian Rosebrock的优秀的著作《Python计算机视觉深度学习》。在书中,Adrian简单地描述了他如何用机器学习绕过E-ZPass New York网站的验证码:Adrian没有访...转载 2020-05-27 01:10:39 · 2320 阅读 · 0 评论 -
Win10+caffe+CUDA9.1+vs2013+Matlab2018b+GPU环境,跑通faster_rcnn-master
Win10+caffe+CUDA9.1+vs2013+Matlab2018b+GPU环境,跑通faster_rcnn-master一.软件安装因为我用的Matlab2018b是目前最新版本的Matlab,所以在网上能找到的配置环境参考案例很少,几乎没有对应的。所以就自己沉下心来参考以前的版本来自己配置环境。首先我装的是CUDA9.1,主要是因为Matlab2018b所需的版本至少是(...转载 2020-03-05 01:15:54 · 372 阅读 · 0 评论 -
用python进行人脸识别
一、安装cv2sudo apt-get install python-opencv opencv-data二、Haar特征分类器Haar特征分类器就是一个XML文件,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。Haar特征分类器存放目录:OpenCV安装目录中的data/haarcascades目录下,通过apt安装的Haar特征分类器如下:$ ...转载 2020-01-14 00:18:02 · 1137 阅读 · 0 评论 -
DeepFake——实际操作
文章目录文件结构 执行步骤 效果优化 总结: 切图层面: extract层面: select 层面: 原始数据优化: 执行过程优化: convert : 其他优化idea 辅助知识 实验记录 环境配置 环境配置——数据: 环境配置——第三方库 环境配置——操作工具 环境配置——硬件 环境配置——其他 bug解除 关键信息...转载 2019-11-19 14:17:04 · 1330 阅读 · 0 评论 -
训练自己的数据
为了完成毕业设计,还需要继续学习Caffe,并能够成功地训练自己的实验数据,这里整理Caffe整个训练过程。 使用Caffe训练卷积神经网络主要包括以下几个步骤:(1)预处理图像,一般是指将图像转化为具有同样大小的像素;(2)根据设计好的网络结构配置相应的网络结构文件和训练参数文件;(3)训练模型并测试结果;(4)可视化结果(如果需要)。1.准备数据对于图像分类而言,去Imag转载 2016-07-29 14:31:10 · 517 阅读 · 0 评论 -
caffe命令行解析
转载自:http://www.cnblogs.com/denny402/p/5076285.htmlcaffe的运行提供三种接口:c++接口(命令行)、python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imagese转载 2016-07-29 14:32:58 · 437 阅读 · 0 评论 -
Caffe 深度学习框架上手教程
转载自:http://www.csdn.net/article/2015-01-22/2823663摘要:Caffe是一个清晰而高效的深度学习框架,本文详细介绍了caffe的优势、架构,网络定义、各层定义,Caffe的安装与配置,解读了Caffe实现的图像分类模型AlexNet,并演示了CIFAR-10在caffe上进行训练与学习。Caffe是一个清晰而高效转载 2016-07-29 14:50:06 · 521 阅读 · 0 评论 -
caffe实践程序1——mnist任务总结
一般来说,跑一个数据集需要以下步骤:1 把数据集转换成leveldb格式。例子caffe神经网络框架的辅助工具(将图片转换为leveldb格式)教程中的get_mnist.sh 是得到2个mnist data文件,一个用于训练,一个用于测试,而后create_mnist.sh是利用caffe-master/build/examples/mnist/的convert_mnist_data.b转载 2016-07-29 15:55:27 · 430 阅读 · 0 评论 -
caffe 实践程序2——用细分的方法实现caffe中cifar100的识别
[html] view plain copy ../../build/tools/extract_features.bin cifar10_quick_iter_16000 cifar100_quick_train.prototxt ip1 yjyfeature 500 CPU 0 1,修改convert_cifar_data的文件的内容,转载 2016-07-29 15:56:04 · 770 阅读 · 0 评论 -
caffe 实践程序3——caffe提取特征以及由模型test数据
在 cifar100目录下 //提取conv3的特征[html] view plain copy ../../build/tools/extract_features.bin cifar10_quick_iter_16000 cifar100_quick_train.prototxt ip1 yjyfeature 500 CPU 0转载 2016-07-29 15:56:45 · 1265 阅读 · 0 评论 -
caffe 实践程序4——cifar10网络
cifar10是个中小型的图片数据库,总共60000张32*32大小的图片,5w张用于训练,1w张用于测试。caffe上cifar10的训练流程。cifar10_quick_train_test.prototxt[html] view plain copy name: "CIFAR10_quick" layer {转载 2016-07-29 15:57:18 · 454 阅读 · 0 评论 -
draw_net.py绘制caffe net结构
1、安装pydot[cpp] view plain copy $ sudo apt-get install python-pydot 2、安装graphviz[cpp] view plain copy $ sudo apt-get install graphviz 3、生成[cpp] vie转载 2016-08-04 18:40:13 · 320 阅读 · 0 评论 -
Caffe中的损失函数解析
导言在有监督的机器学习中,需要有标签数据,与此同时,也需要有对应的损失函数(Loss Function)。在Caffe中,目前已经实现了一些损失函数,包括最常见的L2损失函数,对比损失函数,信息增益损失函数等等。在这里做一个笔记,归纳总结Caffe中用到的不同的损失函数,以及分析它们各自适合的使用场景。欧式距离损失函数(Euclidean Loss)输入:预测的值: y ^ ∈转载 2016-10-10 09:56:37 · 733 阅读 · 0 评论 -
多目标输出探究
正常的CNN,其输入是图像,其输出是一个label整数,其正是用Caffe的底层数据Datum(Image,LMDB,LevelDB的基础)来表示message Datum { optional int32 channels = 1; optional int32 height = 2; optional int32 width = 3; // the actual image转载 2016-10-10 09:57:36 · 345 阅读 · 0 评论 -
【Caffe代码解析】compute_image_mean
功能: 计算训练数据库的平均图像。 因为平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项。使用方法: compute_image_mean [FLAGS] INPUT_DB [OUTPUT_FILE]\n”) 参数:INPUT_DB: 数据库 参数(可选):OUTPUT_FILE: 输出文件名,不提供的话,不保存平均图像blob实现方法:数据源转载 2016-10-10 10:14:08 · 1224 阅读 · 1 评论 -
【Caffe代码解析】convert_imageset
功能: 将图像数据,转化为KV数据库(LevelDB或者LMDB) 需要提供文件列表(包含对应的标签) 使用方法: convert_imageset [FLAGS] ROOTFOLDER/ LISTFILE DB_NAME 其中 参数:ROOTFOLDER 表示输入的文件夹 参数:LISTFILE 表示输入文件列表,其每一行为:类似 subfolder1/file1.J转载 2016-10-10 10:14:44 · 667 阅读 · 0 评论 -
【Caffe代码解析】Blob
主要功能:Blob 是Caffe作为数据传输的媒介,无论是网络权重参数,还是输入数据,都是转化为Blob数据结构来存储,网络,求解器等都是直接与此结构打交道的。其直观的可以把它看成一个有4纬的结构体(包含数据和梯度),而实际上,它们只是一维的指针而已,其4维结构通过shape属性得以计算出来(根据C语言的数据顺序)。其成员变量有: protected: shared_ptr d转载 2016-10-10 10:16:48 · 315 阅读 · 0 评论 -
【Caffe代码解析】SyncedMemory
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210转载 2016-10-10 10:17:36 · 234 阅读 · 0 评论 -
Caffe傻瓜系列(1):数据层及参数
要运行caffe,需要先创建一个模型(model),如比较常用的Lenet,Alex等, 而一个模型由多个屋(layer)构成,每一屋又由许多参数组成。所有的参数都定义在caffe.proto这个文件中。要熟练使用caffe,最重要的就是学会配置文件(prototxt)的编写。层有很多种类型,比如Data,Convolution,Pooling等,层之间的数据流动是以Blobs的方式进行。转载 2016-10-11 16:16:50 · 342 阅读 · 0 评论 -
Caffe傻瓜系列(2):视觉层(Vision Layers)及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。1、Convolution层:就是卷积层,是卷积神经网络(CNN)的核心层。层类型:Convolution lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.pro转载 2016-10-11 16:17:02 · 291 阅读 · 0 评论 -
Caffe傻瓜系列(3):激活层(Activiation Layers)及参数
在激活层中,对输入数据进行激活操作(实际上就是一种函数变换),是逐元素进行运算的。从bottom得到一个blob数据输入,运算后,从top输入一个blob数据。在运算过程中,没有改变数据的大小,即输入和输出的数据大小是相等的。输入:n*c*h*w输出:n*c*h*w常用的激活函数有sigmoid, tanh,relu等,下面分别介绍。1、Sigmoid对每个输入数据,利用sig转载 2016-10-11 16:17:10 · 263 阅读 · 0 评论 -
Caffe傻瓜系列(4):其它常用层及参数
本文讲解一些其它的常用层,包括:softmax_loss层,Inner Product层,accuracy层,reshape层和dropout层及其它们的参数配置。1、softmax-losssoftmax-loss层和softmax层计算大致是相同的。softmax是一个分类器,计算的是类别的概率(Likelihood),是Logistic Regression 的一种推广。Logist转载 2016-10-12 20:33:23 · 275 阅读 · 0 评论 -
Caffe傻瓜系列(5):Blob,Layer and Net以及对应配置文件的编写
深度网络(net)是一个组合模型,它由许多相互连接的层(layers)组合而成。Caffe就是组建深度网络的这样一种工具,它按照一定的策略,一层一层的搭建出自己的模型。它将所有的信息数据定义为blobs,从而进行便利的操作和通讯。Blob是caffe框架中一种标准的数组,一种统一的内存接口,它详细描述了信息是如何存储的,以及如何在层之间通讯的。1、blobBlobs封装了运行时的数据信息,转载 2016-10-12 20:34:36 · 313 阅读 · 0 评论 -
Caffe傻瓜系列(6):solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作。caffe程序运行必带的一个参数就是solver配置文件。运行代码一般为# caffe train --solver=*_slover.prototxt在Deep Learning中,往往loss function是非凸的,没有解析解,我们需要通过优化方法来求解。solver的主要作用就是交替调用前向(forward)转载 2016-10-12 20:34:44 · 261 阅读 · 0 评论 -
Caffe傻瓜系列(7):solver优化方法
上文提到,到目前为止,caffe总共提供了六种优化方法:Stochastic Gradient Descent (type: "SGD"),AdaDelta (type: "AdaDelta"),Adaptive Gradient (type: "AdaGrad"),Adam (type: "Adam"),Nesterov’s Accelerated Gradient (type: "Ne转载 2016-10-12 20:34:58 · 322 阅读 · 0 评论 -
Caffe傻瓜系列(8):命令行解析
caffe的运行提供三种接口:c++接口(命令行)、Python接口和matlab接口。本文先对命令行进行解析,后续会依次介绍其它两个接口。caffe的c++主程序(caffe.cpp)放在根目录下的tools文件夹内, 当然还有一些其它的功能文件,如:convert_imageset.cpp, train_net.cpp, test_net.cpp等也放在这个文件夹内。经过编译后,这些文件都转载 2016-10-12 20:35:11 · 271 阅读 · 0 评论 -
Caffe傻瓜系列(9):训练和测试自己的图片
在深度学习的实际应用中,我们经常用到的原始数据是图片文件,如jpg,jpeg,png,tif等格式的,而且有可能图片的大小还不一致。而在caffe中经常使用的数据类型是lmdb或leveldb,因此就产生了这样的一个问题:如何从原始图片文件转换成caffe中能够运行的db(leveldb/lmdb)文件?前面文章有学习过着个数据由来和使用。在caffe中,作者为我们提供了这样一个文件:conv转载 2016-10-12 20:35:37 · 545 阅读 · 2 评论 -
Caffe傻瓜系列(10):draw_net.py绘制caffe net结构
版权声明:本文为博主原创文章,未经博主允许不得转载。1、安装pydot[cpp] view plain copy $ sudo apt-get install python-pydot 2、安装graphviz[cpp] view plain copy $ sudo apt-get install gra转载 2016-10-12 20:35:55 · 295 阅读 · 0 评论 -
Caffe傻瓜系列(11):caffe中的lr_policy选择
在自己配置训练网络时的solver文件中这个参数选择有好多种策略。接下来看看caffe.proto文件的这个参数:[cpp] view plain copy // The learning rate decay policy. The currently implemented learning rate // policies are as follows:转载 2016-10-12 20:36:16 · 1243 阅读 · 0 评论 -
R-CNN学习笔记1:Selective Search for Object Recognition
原文地址:http://blog.csdn.net/surgewong/article/details/39316931Selective Search for Object Recoginitionsurgewong@gmail.comhttp://blog.csdn.net/surgewong 在前一转载 2016-10-12 20:36:54 · 849 阅读 · 0 评论 -
R-CNN学习笔记2:Rich feature hierarchies for accurate object detection and semantic segmentation
原文地址:http://blog.csdn.NET/liyaohhh/article/details/50824226 Rich feature hierarchies for accurate object detection and semantic segmentation、转载 2016-10-12 20:37:13 · 415 阅读 · 0 评论 -
R-CNN学习笔记3:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition(SPP-net)
原文地址:http://blog.csdn.NET/u011534057/article/details/51219959CNN网络需要固定尺寸的图像输入,SPPNet将任意大小的图像池化生成固定长度的图像表示,提升R-CNN检测的速度24-102倍。固定图像尺寸输入的问题,截取的区域未涵盖整个目标或者缩放带来图像的扭曲。事实上,CNN的卷积层不需要固定尺寸的图像,全连转载 2016-10-12 20:37:31 · 882 阅读 · 0 评论 -
R-CNN学习笔记4:Fast R-CNN
【原文:http://zhangliliang.com/2015/05/17/paper-note-fast-rcnn/】论文出处见:http://arxiv.org/abs/1504.08083项目见:https://github.com/rbgirshick/fast-rcnnR-CNN的进化版,0.3s一张图片,VOC07有70的mAP,可谓又快又强。而且rb转载 2016-10-12 20:37:42 · 365 阅读 · 0 评论 -
R-CNN学习笔记5:Faster R-CNN
原文地址:http://blog.csdn.NET/cv_family_z/article/details/46864473摘要:SPPNet和Fast R-CNN降低了网络学习特征的时间,SS由于需耗时1~2s,EdgeBoxes 耗时约0.2s,提取proposal的方法成为检测的瓶颈。本文提出了Region Proposal Networks(RPNs)实现实时提取proposa转载 2016-10-12 20:37:59 · 396 阅读 · 0 评论 -
caffe的caffe.proto
版权声明:本文为博主原创文章,未经博主允许不得转载。经过前面“caffe的protocol buffer使用例子”的学习,对caffe.proto熟悉了。看caffe源码先从这里开始吧。它位于…\src\caffe\proto目录下,在这个文件夹下还有一个.pb.cc和一个.pb.h文件,这两个文件都是由caffe.proto编译而来的。 在caffe.proto中定义了很转载 2016-10-12 20:38:38 · 754 阅读 · 0 评论 -
caffe的protocol buffer使用例子
版权声明:本文为博主原创文章,未经博主允许不得转载。目录(?)[+]上一篇学习了google的数据描述语言,然后在caffe配置好的基础上进行一个简单的编码例子测试。可能大家开始不太好找protobuf的编译器默认的安装位置,我直接使用/usr/bin/protoc命令进行操作。开始建一个proto文件文件名一般按照packageName.MessageName转载 2016-10-12 20:38:58 · 426 阅读 · 0 评论 -
caffe数据格式(Google Protocol Buffers)
caffe该不该看底层的代码,看个人兴趣,个人觉得是一个设计的非常好的平台,值得学习学习。不知道从哪方面开始学习,caffe用到的知识太多了,对于我这样的新手基本一个配置就搞得头疼啊,接触了这么久caffe,打算开始学习一下caffe的源码了。那就先从数据格式开始学习喽。找了很久资料,终于找到一个比官网容易学习的博文。按照博文介绍一步步理解了。=======================转载 2016-10-12 20:39:13 · 485 阅读 · 0 评论 -
【Caffe安装】Ubuntu14.04上Caffe配置安装(Only CPU)
常说天作孽犹可违,人作孽不可活啊,那为了毕设,我就是作死啊。没办法自己从三月份辞掉实习开始断断续续学习深度学习,才明白入坑虽浅,基情不断啊。为了能够完成毕设,便选了Caffe,也到处都是坑啊。没办法,为了祭奠我那糟糕透顶的记忆脑细胞,用我这糟糕的文笔稍微记录一下吧。首先想吐槽一下,我的电脑没有Nvidia,没有Nvidia,没有Nvidia,重要的事情说三篇。在这上面就耽误了好几天。转载 2016-07-29 14:28:32 · 518 阅读 · 0 评论 -
【Caffe安装】ImportError: No module named caffe 的解决方案
在成功编译caffe的源码之后,可以在python环境中使用caffe。在Ubuntu环境下,打开python解释程序,输入import caffe时,可能会出现 ImportError: No module named caffe>>>import caffe Traceback (most recent call last): File "", line 1转载 2016-07-29 14:46:34 · 3290 阅读 · 0 评论