描述
一个街区有很多住户,街区的街道只能为东西、南北两种方向。
住户只可以沿着街道行走。
各个街道之间的间隔相等。
用(x,y)来表示住户坐在的街区。
例如(4,20),表示用户在东西方向第4个街道,南北方向第20个街道。
现在要建一个邮局,使得各个住户到邮局的距离之和最少。
求现在这个邮局应该建在那个地方使得所有住户距离之和最小;
输入
第一行一个整数n<20,表示有n组测试数据,下面是n组数据;
每组第一行一个整数m<20,表示本组有m个住户,下面的m行每行有两个整数0<x,y<100,表示某个用户所在街区的坐标。
m行后是新一组的数据;
输出
样例输出
方法②:
一个街区有很多住户,街区的街道只能为东西、南北两种方向。
住户只可以沿着街道行走。
各个街道之间的间隔相等。
用(x,y)来表示住户坐在的街区。
例如(4,20),表示用户在东西方向第4个街道,南北方向第20个街道。
现在要建一个邮局,使得各个住户到邮局的距离之和最少。
求现在这个邮局应该建在那个地方使得所有住户距离之和最小;
输入
第一行一个整数n<20,表示有n组测试数据,下面是n组数据;
每组第一行一个整数m<20,表示本组有m个住户,下面的m行每行有两个整数0<x,y<100,表示某个用户所在街区的坐标。
m行后是新一组的数据;
输出
每组数据输出到邮局最小的距离和,回车结束;
样例输入
2
3
1 1
2 1
1 2
5
2 9
5 20
11 9
1 1
1 20
2
44
分析:
方法①:遍历每一个点,计算出到各个用户的距离之和,求得最小值并输出
#include <stdio.h>
int ffabs(int num);
int main()
{
int n;
scanf("%d",&n);
while (n--)
{
int i = 0;
int j = 0;
int k = 0;
int m = 0;
int result = 0x7fff;
scanf("%d",&m);
int locate[m][2];
for (i = 0; i < m; i++)
{
scanf("%d%d",&locate[i][0],&locate[i][1]);
}
for (i = 1; i < 100; i++)
{
for (j = 1; j < 100; j++)
{
int tmp = 0;
for (k = 0; k < m; k++)
{
tmp += (ffabs(locate[k][0]-i)+ffabs(locate[k][1]-j));
}
result = result > tmp ? tmp : result;
}
}
printf("%d\n",result);
}
return 0;
}
int ffabs(int num)
{
return num > 0 ? num : -num;
}
方法②:
分析:最短路径的计算,是用最后的邮局座标与用户座标做差值,即:|locate[k][0]-i|+|locate[k][1]-j|。
首先对用户座标进行排序,横纵座标升序排列。最短路径的情况一定是 邮局在最大和最小之间。
代码如下:
#include <stdio.h>
#include <stdlib.h>
#define MAX_SIZE 100
int cmp(const void *a, const void *b);
int main()
{
int n;
scanf("%d",&n);
while (n--)
{
int i = 0;
int m = 0;
int result = 0;
int xordinate[MAX_SIZE] = {0,};
int yordinate[MAX_SIZE] = {0,};
scanf("%d",&m);
for (i = 0; i < m; i++)
{
scanf("%d%d",&xordinate[i],&yordinate[i]);
}
qsort(xordinate,m,sizeof(xordinate[0]),cmp);
qsort(yordinate,m,sizeof(yordinate[0]),cmp);
for (i = 0; i < m/2; i++)
{
result += xordinate[m-i-1]-xordinate[i] + yordinate[m-i-1]-yordinate[i];
}
printf("%d\n",result);
}
return 0;
}
int cmp(const void *a, const void *b)
{
return *((int *)a)-*((int *)b);
}