MMSE信道估计的推导

在通信的文章中,经常会遇见信道估计的问题,而且大多数文献通常会引用S. M. Kay的著作Fundamentals of Statistical Signal Processing: Estimation Theory,却没有给出具体的缘由,这对初学者造成了很大的困扰。下面针对信道估计的问题浅谈一下自己的理解。

1. MMSE估计

以文献Simultaneous Wireless Information and Power Transfer for Downlink Multi-User Massive Antenna-Array Systems为例,经过导频估计后,用户 k k k的信号为
y ~ k = E k β k σ 2 h k + n ~ k {\widetilde {\bf{y}}_k} = \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k} + {\widetilde {\bf{n}}_k} y k=σ2Ekβk hk+n k
其中 h k ∼ C N ( 0 , I ) {{\mathbf{h}}_k} \sim \mathcal{C}\mathcal{N}(0,{\mathbf{I}}) hkCN(0,I) n ~ k ∼ C N ( 0 , I N ) {{\mathbf{\tilde n}}_k} \sim \mathcal{C}\mathcal{N}\left( {0,{{\mathbf{I}}_N}} \right) n~kCN(0,IN)
再经过最小均方误差估计(minimum mean square error estimation,MMSE)。具体步骤如下,根据最小均方误差准则,估计量为
h k m s e = ∫ − ∞ ∞ h k p ( h k ∣ y ~ k ) d h k {{\bf{h}}_{kmse}} = \int_{ - \infty }^\infty {{{\bf{h}}_k}p\left( {{{\bf{h}}_k}\left| {{{\widetilde {\bf{y}}}_k}} \right.} \right)} d{{\bf{h}}_k} hkmse=hkp(hky k)dhk
复高斯分布的概率密度函数为 p ( h k ) = 1 π e − h k 2 p\left( {{{\bf{h}}_k}} \right) = \frac{1}{\pi }{e^{ - {\bf{h}}_k^2}} p(hk)=π1ehk2
p ( y ~ k ∣ h k ) = 1 π e − ( y ~ k − E k β k σ 2 h k ) 2 p\left( {{{{\bf{\tilde y}}}_k}|{{\bf{h}}_k}} \right) = \frac{1}{\pi }{e^{ - {{\left( {{{{\bf{\tilde y}}}_k} - \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k}} \right)}^2}}} p(y~khk)=π1e(y~kσ2Ekβk hk)2

p ( h k ∣ y ~ k ) = p ( y ~ k ∣ h k ) p ( h k ) p ( y ~ k ) = 1 p ( y ~ k ) 1 π e − ( y ~ k − E k β k σ 2 h k ) 2 1 π e − h k 2 = K 1 ( y ~ k ) e − ( y ~ k 2 − 2 E k β k σ 2 y ~ k h k + E k β k σ 2 h k 2 + h k 2 ) = K 2 ( y ~ k ) e − ( E k β k + σ 2 σ 2 h k 2 − 2 E k β k σ 2 y ~ k h k ) = K 2 ( y ~ k ) e − E k β k + σ 2 σ 2 ( h k 2 − 2 σ E k β k E k β k + σ 2 y ~ k h k ) = K 3 ( y ~ k ) − E k β k + σ 2 σ 2 ( h k − σ E k β k E k β k + σ 2 y ~ k ) 2 \begin{array}{l} p\left( {{{\bf{h}}_k}|{{{\bf{\tilde y}}}_k}} \right) = \frac{{p\left( {{{{\bf{\tilde y}}}_k}|{{\bf{h}}_k}} \right)p\left( {{{\bf{h}}_k}} \right)}}{{p\left( {{{{\bf{\tilde y}}}_k}} \right)}}\\ {\rm{ = }}\frac{1}{{p\left( {{{{\bf{\tilde y}}}_k}} \right)}}\frac{1}{\pi }{e^{ - {{\left( {{{{\bf{\tilde y}}}_k} - \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k}} \right)}^2}}}\frac{1}{\pi }{e^{ - {\bf{h}}_k^2}}\\ {\rm{ = }}{K_1}\left( {{{{\bf{\tilde y}}}_k}} \right){e^{ - \left( {{{{\bf{\tilde y}}}_k}^2 - 2\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{{\bf{\tilde y}}}_k}{{\bf{h}}_k} + \frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}{\bf{h}}_k^2 + {\bf{h}}_k^2} \right)}}\\ = {K_2}\left( {{{{\bf{\tilde y}}}_k}} \right){e^{ - \left( {\frac{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\sigma ^2}}}{\bf{h}}_k^2 - 2\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{{\bf{\tilde y}}}_k}{{\bf{h}}_k}} \right)}}\\ = {K_2}\left( {{{{\bf{\tilde y}}}_k}} \right){e^{ - \frac{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\sigma ^2}}}\left( {{\bf{h}}_k^2 - \frac{{2\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\bf{\tilde y}}}_k}{{\bf{h}}_k}} \right)}}\\ = {K_3}{\left( {{{{\bf{\tilde y}}}_k}} \right)^{ - \frac{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\sigma ^2}}}{{\left( {{\bf{h}}_k^{} - \frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\bf{\tilde y}}}_k}} \right)}^2}}} \end{array} p(hky~k)=p(y~k)p(y~khk)p(hk)=p(y~k)1π1e(y~kσ2Ekβk hk)2π1ehk2=K1(y~k)e(y~k22σ2Ekβk y~khk+σ2Ekβkhk2+hk2)=K2(y~k)e(σ2Ekβk+σ2hk22σ2Ekβk y~khk)=K2(y~k)eσ2Ekβk+σ2(hk2Ekβk+σ22σEkβk y~khk)=K3(y~k)σ2Ekβk+σ2(hkEkβk+σ2σEkβk y~k)2

最后得到 h ^ k m m s e = σ E k β k E k β k + σ 2 y ~ k = σ E k β k E k β k + σ 2 ( E k β k σ 2 h k + n ~ k ) = E k β k E k β k + σ 2 h k + σ E k β k E k β k + σ 2 n ~ k {{\bf{\hat h}}_{k{\rm{mmse}}}} = \frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{{\bf{\tilde y}}_k} = \frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}\left( {\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k} + {{\widetilde {\bf{n}}}_k}} \right) = \frac{{{E_k}{\beta _k}}}{{{E_k}{\beta _k} + {\sigma ^2}}}{{\bf{h}}_k}{\rm{ + }}\frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{\widetilde {\bf{n}}_k} h^kmmse=Ekβk+σ2σEkβk y~k=Ekβk+σ2σEkβk (σ2Ekβk hk+n k)=Ekβk+σ2Ekβkhk+Ekβk+σ2σEkβk n k

方差等于 ( E k β k E k β k + σ 2 ) 2 + ( σ E k β k E k β k + σ 2 ) 2 = E k β k ( E k β k + σ 2 ) ( E k β k + σ 2 ) 2 = E k β k E k β k + σ 2 {\left( {\frac{{{E_k}{\beta _k}}}{{{E_k}{\beta _k} + {\sigma ^2}}}} \right)^2}{\rm{ + }}{\left( {\frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}} \right)^2}{\rm{ = }}\frac{{{E_k}{\beta _k}\left( {{E_k}{\beta _k} + {\sigma ^2}} \right)}}{{{{\left( {{E_k}{\beta _k} + {\sigma ^2}} \right)}^2}}}{\rm{ = }}\frac{{{E_k}{\beta _k}}}{{{E_k}{\beta _k} + {\sigma ^2}}} (Ekβk+σ2Ekβk)2+(Ekβk+σ2σEkβk )2=(Ekβk+σ2)2Ekβk(Ekβk+σ2)=Ekβk+σ2Ekβk

2. MAP估计

根据最佳估计不变性,当被估计量的后验概率密度函数是高斯型时,最大后验估计(MAP)等价于MMSE。下面给出第二种方法,计算过程较为简单。
∂ ln ⁡ p ( h k ) ∂ h k = − 2 h k \frac{{\partial \ln p\left( {{{\bf{h}}_k}} \right)}}{{\partial {{\bf{h}}_k}}} = - 2{{\bf{h}}_k} hklnp(hk)=2hk

∂ ln ⁡ p ( y ~ k ∣ h k ) ∂ h k = 2 E k β k σ 2 ( y ~ k − E k β k σ 2 h k ) \frac{{\partial \ln p\left( {{{{\bf{\tilde y}}}_k}|{{\bf{h}}_k}} \right)}}{{\partial {{\bf{h}}_k}}} = 2\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} \left( {{{{\bf{\tilde y}}}_k} - \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k}} \right) hklnp(y~khk)=2σ2Ekβk (y~kσ2Ekβk hk)

MAP方程有
∂ ln ⁡ p ( y ~ k ∣ h k ) ∂ h k + ∂ ln ⁡ p ( h k ) ∂ h k ∣ h ^ k m a p = 0 \frac{{\partial \ln p\left( {{{{\bf{\tilde y}}}_k}|{{\bf{h}}_k}} \right)}}{{\partial {{\bf{h}}_k}}}{\rm{ + }}\frac{{\partial \ln p\left( {{{\bf{h}}_k}} \right)}}{{\partial {{\bf{h}}_k}}}\left| {_{{{{\bf{\hat h}}}_{k{\rm{map}}}}}} \right. = 0 hklnp(y~khk)+hklnp(hk)h^kmap=0

2 E k β k σ 2 ( y ~ k − E k β k σ 2 h ^ k m a p ) − 2 h ^ k m a p = 0 E k β k σ 2 y ~ k = E k β k σ 2 h ^ k m a p + σ 2 σ 2 h ^ k m a p h ^ k m a p = σ E k β k E k β k + σ 2 y ~ k = σ E k β k E k β k + σ 2 ( E k β k σ 2 h k + n ~ k ) = E k β k E k β k + σ 2 h k + σ E k β k E k β k + σ 2 n ~ k \begin{array}{l} 2\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} \left( {{{{\bf{\tilde y}}}_k} - \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{{\bf{\hat h}}}_{k{\rm{map}}}}} \right) - 2{{{\bf{\hat h}}}_{k{\rm{map}}}}{\rm{ = }}0\\ \sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{{\bf{\tilde y}}}_k} = \frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}{{{\bf{\hat h}}}_{k{\rm{map}}}} + \frac{{{\sigma ^2}}}{{{\sigma ^2}}}{{{\bf{\hat h}}}_{k{\rm{map}}}}\\ {{{\bf{\hat h}}}_{k{\rm{map}}}} = \frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{{{\bf{\tilde y}}}_k} = \frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}\left( {\sqrt {\frac{{{E_k}{\beta _k}}}{{{\sigma ^2}}}} {{\bf{h}}_k} + {{\widetilde {\bf{n}}}_k}} \right) = \frac{{{E_k}{\beta _k}}}{{{E_k}{\beta _k} + {\sigma ^2}}}{{\bf{h}}_k}{\rm{ + }}\frac{{\sigma \sqrt {{E_k}{\beta _k}} }}{{{E_k}{\beta _k} + {\sigma ^2}}}{\widetilde {\bf{n}}_k} \end{array} 2σ2Ekβk (y~kσ2Ekβk h^kmap)2h^kmap=0σ2Ekβk y~k=σ2Ekβkh^kmap+σ2σ2h^kmaph^kmap=Ekβk+σ2σEkβk y~k=Ekβk+σ2σEkβk (σ2Ekβk hk+n k)=Ekβk+σ2Ekβkhk+Ekβk+σ2σEkβk n k

以上过程没有考虑传输 N 次的影响。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值