大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的集成学习:Bagging和Boosting。
文章目录
- 集成学习(Ensemble Learning)概述
- Bagging 算法
- Boosting 算法
- Stacking 算法
- 历史文章
集成学习(Ensemble Learning)概述
集成学习是一种通过组合多个模型(通常是弱模型)来提升整体预测性能的技术,主要分为 Bagging 和 Boosting 两类方法。Bagging 和 Boosting 是构建强大的集成模型的基础,并衍生出了多种经典的算法,如随机森林、AdaBoost、Gradient Boosting、XGBoost 和 GBDT。
Bagging 和 Boosting 的对比
属性 | Baggi |
---|