机器学习笔记——集成学习、Bagging(随机森林)、Boosting(AdaBoost、GBDT、XGBoost、LightGBM)、Stacking

大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本笔记介绍机器学习中常见的集成学习:Bagging和Boosting。

在这里插入图片描述



集成学习(Ensemble Learning)概述

集成学习是一种通过组合多个模型(通常是弱模型)来提升整体预测性能的技术,主要分为 BaggingBoosting 两类方法。Bagging 和 Boosting 是构建强大的集成模型的基础,并衍生出了多种经典的算法,如随机森林、AdaBoost、Gradient Boosting、XGBoost 和 GBDT。

Bagging 和 Boosting 的对比

属性 Baggi
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值