python教程:Pandas之Fillna填充缺失数据的方法

本文介绍了Pandas库中fillna方法用于填充缺失数据的各种方式,包括使用常数、字典、设置inplace参数、更改插值方式和限制填充个数,以及调整填充方向。同时,文章推荐了一个Python学习资源,提供从基础到项目实战的Python编程技术学习指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Pandas之Fillna填充缺失数据的方法
约定:

import pandas as pd
import numpy as np
from numpy import nan as NaN

填充缺失数据
fillna()是最主要的处理方式了。

df1=pd.DataFrame([[1,2,3],[NaN,NaN,2],[NaN,NaN,NaN],[8,8,NaN]])
df1

代码结果:
在这里插入图片描述
用常数填充:
df1.fillna(100)
代码结果:在这里插入图片描述
通过字典填充不同的常数:

df1.fillna({0:10,1:20,2:30})

代码结果:
在这里插入图片描述
传入inplace=True直接修改原对象:

df1.fillna(0,inplace=True)
df1

代码结果:在这里插入图片描述
传入method=” “改变插值方式:

df2=pd.DataFrame(np.random.randint(0,10,(5,5)))
df2.iloc[1:4,3]=NaN;df2.iloc[2:4,4]=NaN
df2

代码结果:在这里插入图片描述

df2.fillna(method='ffill')#用前面的值来填充

代码结果:在这里插入图片描述
传入limit=” “限制填充个数:df2.fillna(method='bfill',limit=2)
代码结果:在这里插入图片描述
传入axis=” “修改填充方向:

df2.fillna(method="ffill",limit=1,axis=1)

代码结果:在这里插入图片描述

推荐我们的python学习基地,点击进入,看老程序是如何学习的!从基础的python脚本、爬虫、django、数据挖掘等编程技术,工作经验,还有前辈精心为学习python的小伙伴整理零基础到项目实战的资料,!每天都有程序员定时讲解Python技术,分享一些学习的方法和需要留意的小细节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值