1 项目介绍
本系统要是通过以Python技术来对医疗相关内容进行数据的爬取,通过爬取足量的数据来进行知识图谱的的搭建,通过Neo4j来实现知识图谱的可视化。通过智慧问答的方式构建出以bert+lstm+crf的识别模型,从而完成对医疗问句主体的识别,构建出数据集以及实现文本的训练。通过django来进行web网页的开发,通过面向用户的网页端开发使用来满足用户医疗问答的需要。
2、项目技术
项目后端框架:Java+ssm
项目前端框架:vue2,ssm
3、开发环境
后端:开发语言:python
框架:python,django
python版本:python3.6.8版本向上兼容
数据库:mysql5.7+
数据库工具:Navicat11+
开发软件:pycharm
前端:nodejs,vue,html
数据库:mysql
4 系统的实现
系统登录界面
医疗领域用户问答识别系统主要通过浏览器端实现系统平台的访问,通过首页登录名及密码信息的录入实现系统平台的登录使用,对于没有系统账号的用户可以通过注册页面实现在线的用户注册,系统界面的内容呈现相对简洁,具体界面呈现内容如下:
图4-1 系统登录界面
进入到识别系统后台,系统首页界面主要介绍了知识图谱的概述,同时通过首页导航意图识别、问句管理以及问句分析功能模块的内容实现在线问答,结合医疗领域的问句管理及问句分析可以对系统端的问句内容进行整理和数据统计,系统用户可以通过修改密码以及用户管理实现识别系统登录及个人信息的维护,具体系统首页内容呈现如下图所示:
图4-2 系统首页界面
此次医疗领域用户问答意图识别系统的主要功能模块为意图识别模块,用户可以通过该功能模块实现在线问答,通过界面下方的输入栏实现医疗领域相关问题的录入,通过点击发送实现在线提问,系统会结合用户端的问题进行意图分析并反馈问题答复内容,具体意图识别界面的主要功能栏内容呈现如下:
图4-3 意图识别界面
问句管理是对系统用户提出的问题信息进行统一的管理和查询,主要呈现了系统用户提出的问题信息、答案信息以及提出问题用户的个人信息及提问时间等内容,可以对于重复的问题内容进行在线的删除操作,同时也可以结合问题内容进行搜索和查找,具体问句管理界面内容呈现如下图所示:
图4-4 问句管理界面
问句分析主要是对于系统平台的问题内容进行关键字及查询次数内容的统计,通过该界面呈现了医疗领域问题的内容以及提出问题的次数,结合问句分析对高频词的问题内容进行分析和统计,具体问句分析界面呈现如下:
图4-5 问句分析界面
用户可以通过修改密码模块实现登录密码的修改,通过录入新密码和复核录入来实现密码的修改,具体密码修改页面内容如下:
图4-6修改密码界面
通过用户管理界面可以实现用户的新增以及用户基本信息的修改,只需要录入用户姓名、密码以及手机号就可以实现在线用户新增,这里手机号必须为11位数字,具体用户新增界面信息内容录入如下图所示:
图4-7用户管理界面