不断减少时间复杂度的一个例子

        问题:给出N张写有数字(k1, k2, ..., kn)的牌 和 一个数字M, 从中抽4次(每抽完一次要放回), 判断是否存在抽取4次牌上数字的和为M的组合是否存在。

                   1 <= n <= 1000,  1 <= m <= 10^9, 1 <= ki <= 10^6 

        输入:n = 3, m = 10, k = {1, 3, 5}        n = 3, m = 9, k = {1, 3 , 5}

        输出:yes(1, 1, 3,  5)                            no(不存在取4次和为9的情况啦)

        

        (1)最容易想到的方法当然是暴力枚举啦, 那么抽取4次,那么就需要4层循环了,时间复杂度为O(n^4)

	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			for (k = 0; k < n; k++) {
				for (l = 0; l < n; l++) {
					if (m == cards[i] + cards[j] + cards[k] + cards[l]) {
						flag = true;
						break ;
					}
				}
			}
		}
	} // O(n^4)
        题目输入范围可以到1000, 那么上面的将会超时啦。


         (2)要判断是否m = cards[i] + cards[j] + cards[k] + cards[l], 那么可以判断cards[l] = m - cards[i] - cards[j] - cards[k]是否存在(二分查找)。O(n^3*logn)

int bin_search(int* arr, int left, int right, int key) {
	int mid;

	while (left <= right) {
		mid = (left + right)>>1;
		if (arr[mid] == key) {
			return mid;
		} else if (arr[mid] > key) {
			right = mid - 1;
		} else {
			left = mid + 1;
		}
	}

	return -1;
} 

	sort(cards, cards + n);
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			for (k = 0; k < n; k++) {
				key = m - cards[i] - cards[j] - cards[k];
				if (!flag && bin_search(cards, 0, n, key) > 0) {
					flag = true;
				}
			}
		}
	} // O(n^3*logn)

          时间复杂度减小了, 但还是不能满足哦。


          (3)按照上面的思路, 那么我们可以查找cards[l] + cards[k] = m - cards[i] + cards[j]哦, 那么需要一个n*n的数组来保存cards[i] + cards[j]的和哦。O(n^2*logn^2)

	k = 0;
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			nnCards[k++] = cards[i] + cards[j];
		}
	}
	sort(nnCards, nnCards + k);
	for (i = 0; i < n; i++) {
		for (j = 0; j < n; j++) {
			key = m - cards[i] - cards[j];
			if (!flag && bin_search(nnCards, 0, k, key) > 0) {
				flag = true;
			}
		}
	} // O(n^2*logn)
           好了, 时间复杂度降为O(n^2*logn^2)了, 但空间复杂度增加了, 需要一个存放n*n的数组, 那么1000*1000的话还是有点大了吧, 时间换空间?

           这也算一种技巧,暴力搜索的时候多想想能不能降低时间复杂度吧。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值