问题:给出N张写有数字(k1, k2, ..., kn)的牌 和 一个数字M, 从中抽4次(每抽完一次要放回), 判断是否存在抽取4次牌上数字的和为M的组合是否存在。
1 <= n <= 1000, 1 <= m <= 10^9, 1 <= ki <= 10^6
输入:n = 3, m = 10, k = {1, 3, 5} n = 3, m = 9, k = {1, 3 , 5}
输出:yes(1, 1, 3, 5) no(不存在取4次和为9的情况啦)
(1)最容易想到的方法当然是暴力枚举啦, 那么抽取4次,那么就需要4层循环了,时间复杂度为O(n^4)
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {
for (l = 0; l < n; l++) {
if (m == cards[i] + cards[j] + cards[k] + cards[l]) {
flag = true;
break ;
}
}
}
}
} // O(n^4)
题目输入范围可以到1000, 那么上面的将会超时啦。
(2)要判断是否m = cards[i] + cards[j] + cards[k] + cards[l], 那么可以判断cards[l] = m - cards[i] - cards[j] - cards[k]是否存在(二分查找)。O(n^3*logn)
int bin_search(int* arr, int left, int right, int key) {
int mid;
while (left <= right) {
mid = (left + right)>>1;
if (arr[mid] == key) {
return mid;
} else if (arr[mid] > key) {
right = mid - 1;
} else {
left = mid + 1;
}
}
return -1;
}
sort(cards, cards + n);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
for (k = 0; k < n; k++) {
key = m - cards[i] - cards[j] - cards[k];
if (!flag && bin_search(cards, 0, n, key) > 0) {
flag = true;
}
}
}
} // O(n^3*logn)
时间复杂度减小了, 但还是不能满足哦。
k = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
nnCards[k++] = cards[i] + cards[j];
}
}
sort(nnCards, nnCards + k);
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
key = m - cards[i] - cards[j];
if (!flag && bin_search(nnCards, 0, k, key) > 0) {
flag = true;
}
}
} // O(n^2*logn)
好了, 时间复杂度降为O(n^2*logn^2)了, 但空间复杂度增加了, 需要一个存放n*n的数组, 那么1000*1000的话还是有点大了吧, 时间换空间?
这也算一种技巧,暴力搜索的时候多想想能不能降低时间复杂度吧。