机器学习面试总结
文章平均质量分 66
happy5205205
感兴趣可以加,多多交流。
展开
-
XGBoost总结
XGBoost总结原创 2022-12-23 17:52:58 · 663 阅读 · 1 评论 -
随机森林Random Forest面试问题汇总
随机森林面试总结原创 2022-12-23 16:00:31 · 1449 阅读 · 0 评论 -
GBDT总结
Gradient Boost是一个框架,里面可以套入很多不同的算法。GBDT是GB的一种情况,GBDT=Gradient Boost+Decision Tree 也就是梯度提升+决策树GB:梯度迭代 Gradient BoostingBoosting 是一种集成方法。通过对弱分类器的组合得到强分类器,他是串行的,几个弱分类器之间是依次训练的。GBDT 的核心就在于,每一颗树学习的是之前所有树结论和的残差。Gradient 体现在:无论前面一颗树的 cost function 是什么,是均方差还是均差,原创 2021-12-02 22:29:49 · 1865 阅读 · 0 评论 -
逻辑回归面试总结
1、概括虽然逻辑回归能够用于分类,不过其本质还是线性回归。它仅在线性回归的基础上,在特征到结果的映射中加入了一层sigmoid函数(非线性)映射,即先把特征线性求和,然后使用sigmoid函数来预测。逻辑回归假设数据服从伯努利分布,通过极大化似然函数的方法,运用梯度下降来求解参数,来达到将数据二分类的目的。逻辑回归:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判...原创 2019-03-19 13:12:12 · 2056 阅读 · 0 评论 -
决策树面试总结
1、概括 顾名思义,决策树就是一棵树,一颗决策树包含一个根节点、若干个内部结点和若干个叶结点;叶结点对应于决策结果,其他每个结点则对应于一个属性测试;每个结点包含的样本集合根据属性测试的结果被划分到子结点中;根结点包含样本全集,从根结点到每个叶子结点的路径对应了一个判定测试序列。决策树学习的算法通常是一个递归地选择最优特征,并根据该特征对训练数据进行分割,使得各个子数据集有一个最好的分类...原创 2019-04-08 20:55:41 · 837 阅读 · 0 评论 -
SVM面试总结
1、概括 SVM是一种监督式的二分类模型,它通过寻找最大间隔分类平面wx+b=0将正负类样本进行区分,对于线性不可分情况,通过核技法将低维空间映射到高维空间,使其线性可分。 1、当训练样本线性可分时,通过硬间隔最大化,学习一个线性分类器,即线性可分支持向量机; 2、当训练数据近似线性可分时,引入松弛变量,通过软间隔最大化,学习一个线性分类器,即线性支持向量机; ...原创 2019-04-08 21:07:02 · 1007 阅读 · 0 评论