树的同构

题目描述:

给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
在这里插入图片描述
现给定两棵树,请你判断它们是否是同构的。

输入格式:

输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。

输出格式:

如果两棵树是同构的,输出“Yes”,否则输出“No”。

输入样例1(对应图1):
在这里插入图片描述

输出样例1:
Yes

输入样例2(对应图2):
在这里插入图片描述
输出样例2:
No

#include <iostream>
#define MaxTree 10
#define elemType char
using namespace std;

struct TreeNode {
	elemType element;
	elemType left;
	elemType right;
}T1[MaxTree], T2[MaxTree];

void input(TreeNode * T, int N)
{
	for (int i = 0; i < N; i++)
		cin >> T[i].element >> T[i].left >> T[i].right;
}

int find(TreeNode * T, int N)
{
	int *a = new int[N];
	for (int i = 0; i < N; i++)a[i] = 0;
	for (int i = 0; i < N; i++)
	{
		//将Left和right转换为int型
		if (T[i].left != '-') {
			int l = T[i].left - '0';
			a[l] = 1;
		}
		if (T[i].right != '-') {
			int r = T[i].right - '0';
			a[r] = 1;
		}
	}
	int i;
	for (i = 0; i < N; i++) 
	{
		if (a[i] == 0)
			return i;
	}
	return -1;
}

int Toint(elemType a) {
	int b = a - '0';
	if (0 <= b && b <= 9)
		return b;
	else
		return -1;
}

bool judge(TreeNode * T1, TreeNode * T2, int root1, int root2)
{
	if (T1[root1].element != T2[root2].element)
		return false;

	int l1, r1, l2, r2;
	//找出T1树,根节点的左右结点对应的下标l1,r1.
	l1 = Toint(T1[root1].left);
	r1 = Toint(T1[root1].right);
	//找出T2树,根节点的左右结点对应的下标l2,l2
	l2 = Toint(T2[root2].left);
	r2 = Toint(T2[root2].right);

	if (l1 == -1 && l2 == -1 && r1 == -1 && r2 == -1)
		return true;
	else
	{
		if (T1[l1].element == T2[l2].element)
			return judge(T1, T2, l1, l2) && judge(T1, T2, r1, r2);
		else if (T1[l1].element == T2[r2].element)
			return judge(T1, T2, l1, r2) && judge(T1, T2, r1, l2);
		else
			return false;
	}
}

int main()
{
	//input
	int N;
	cin >> N;
	input(T1, N);
	int M;
	cin >> M;
	input(T2, M);
	if (M != N)cout << "No";	//如果结点个数不同,必然不同构,无需进行判断

	//找到树根
	int root1 = find(T1, N);
	int	root2 = find(T2, M);

	//判断两棵树是否同构
	bool j = judge(T1, T2, root1, root2);	//判断两棵树是否同构
	//output
	if (j) cout << "Yes";
	else cout << "No";
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值