题目描述:
给定两棵树T1和T2。如果T1可以通过若干次左右孩子互换就变成T2,则我们称两棵树是“同构”的。例如图1给出的两棵树就是同构的,因为我们把其中一棵树的结点A、B、G的左右孩子互换后,就得到另外一棵树。而图2就不是同构的。
现给定两棵树,请你判断它们是否是同构的。
输入格式:
输入给出2棵二叉树树的信息。对于每棵树,首先在一行中给出一个非负整数N (≤10),即该树的结点数(此时假设结点从0到N−1编号);随后N行,第i行对应编号第i个结点,给出该结点中存储的1个英文大写字母、其左孩子结点的编号、右孩子结点的编号。如果孩子结点为空,则在相应位置上给出“-”。给出的数据间用一个空格分隔。注意:题目保证每个结点中存储的字母是不同的。
输出格式:
如果两棵树是同构的,输出“Yes”,否则输出“No”。
输入样例1(对应图1):
输出样例1:
Yes
输入样例2(对应图2):
输出样例2:
No
#include <iostream>
#define MaxTree 10
#define elemType char
using namespace std;
struct TreeNode {
elemType element;
elemType left;
elemType right;
}T1[MaxTree], T2[MaxTree];
void input(TreeNode * T, int N)
{
for (int i = 0; i < N; i++)
cin >> T[i].element >> T[i].left >> T[i].right;
}
int find(TreeNode * T, int N)
{
int *a = new int[N];
for (int i = 0; i < N; i++)a[i] = 0;
for (int i = 0; i < N; i++)
{
//将Left和right转换为int型
if (T[i].left != '-') {
int l = T[i].left - '0';
a[l] = 1;
}
if (T[i].right != '-') {
int r = T[i].right - '0';
a[r] = 1;
}
}
int i;
for (i = 0; i < N; i++)
{
if (a[i] == 0)
return i;
}
return -1;
}
int Toint(elemType a) {
int b = a - '0';
if (0 <= b && b <= 9)
return b;
else
return -1;
}
bool judge(TreeNode * T1, TreeNode * T2, int root1, int root2)
{
if (T1[root1].element != T2[root2].element)
return false;
int l1, r1, l2, r2;
//找出T1树,根节点的左右结点对应的下标l1,r1.
l1 = Toint(T1[root1].left);
r1 = Toint(T1[root1].right);
//找出T2树,根节点的左右结点对应的下标l2,l2
l2 = Toint(T2[root2].left);
r2 = Toint(T2[root2].right);
if (l1 == -1 && l2 == -1 && r1 == -1 && r2 == -1)
return true;
else
{
if (T1[l1].element == T2[l2].element)
return judge(T1, T2, l1, l2) && judge(T1, T2, r1, r2);
else if (T1[l1].element == T2[r2].element)
return judge(T1, T2, l1, r2) && judge(T1, T2, r1, l2);
else
return false;
}
}
int main()
{
//input
int N;
cin >> N;
input(T1, N);
int M;
cin >> M;
input(T2, M);
if (M != N)cout << "No"; //如果结点个数不同,必然不同构,无需进行判断
//找到树根
int root1 = find(T1, N);
int root2 = find(T2, M);
//判断两棵树是否同构
bool j = judge(T1, T2, root1, root2); //判断两棵树是否同构
//output
if (j) cout << "Yes";
else cout << "No";
return 0;
}