java实现的一些常用的排序算法

package test;

/**
 * Created by mff on 2017/10/26.
 * 日常操作中常见的排序方法有:冒泡排序、快速排序、选择排序、插入排序、希尔排序,甚至还有基数排序、鸡尾酒排序、桶排序、鸽巢排序、归并排序等。
 */
public class SortMethods {
    /**
     * 冒泡法排序<br/>冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

     * <li>比较相邻的元素。如果第一个比第二个大,就交换他们两个。</li>
     * <li>对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。</li>
     * <li>针对所有的元素重复以上的步骤,除了最后一个。</li>
     * <li>持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。</li>

     *
     * @param numbers
     *            需要排序的整型数组
     */
    public static void bubbleSort(int[] numbers) {
        int temp; // 记录临时中间值
        int size = numbers.length; // 数组大小
        for (int i = 0; i < size - 1; i++) {
            for (int j = i + 1; j < size; j++) {
                if (numbers[i] < numbers[j]) { // 交换两数的位置
                    temp = numbers[i];
                    numbers[i] = numbers[j];
                    numbers[j] = temp;
                }
            }
        }
    }

    /**
     * 快速排序<br/>快速排序使用分治法策略来把一个序列分为两个子序列。
     * <ul>
     * <li>从数列中挑出一个元素,称为“基准”</li>
     * <li>重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分割之后,
     * 该基准是它的最后位置。这个称为分割(partition)操作。</li>
     * <li>递归地把小于基准值元素的子数列和大于基准值元素的子数列排序。</li>
     * </ul>
     *
     * @param numbers
     * @param start
     * @param end
     */
    public static void quickSort(int[] numbers, int start, int end) {
        if (start < end) {
            int base = numbers[start]; // 选定的基准值(第一个数值作为基准值)
            int temp; // 记录临时中间值
            int i = start, j = end;
            do {
                while ((numbers[i] < base) && (i < end))
                    i++;
                while ((numbers[j] > base) && (j > start))
                    j--;
                if (i <= j) {
                    temp = numbers[i];
                    numbers[i] = numbers[j];
                    numbers[j] = temp;
                    i++;
                    j--;
                }
            } while (i <= j);
            if (start < j)
                quickSort(numbers, start, j);
            if (end > i)
                quickSort(numbers, i, end);
        }
    }

    /**
     * 选择排序<br/>选择排序是一种简单直观的排序方法,每次寻找序列中的最小值,然后放在最末尾的位置。
     * <li>在未排序序列中找到最小元素,存放到排序序列的起始位置</li>
     * <li>再从剩余未排序元素中继续寻找最小元素,然后放到排序序列末尾。</li>
     * <li>以此类推,直到所有元素均排序完毕。</li>

     *
     * @param numbers
     */
    public static void selectSort(int[] numbers) {
        int size = numbers.length, temp;
        for (int i = 0; i < size; i++) {
            int k = i;
            for (int j = size - 1; j >i; j--)  {
                if (numbers[j] < numbers[k])  k = j;
            }
            temp = numbers[i];
            numbers[i] = numbers[k];
            numbers[k] = temp;
        }
    }

    /**
     * 插入排序<br/>插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。其具体步骤参见代码及注释。
     * <ul>
     * <li>从第一个元素开始,该元素可以认为已经被排序</li>
     * <li>取出下一个元素,在已经排序的元素序列中从后向前扫描</li>
     * <li>如果该元素(已排序)大于新元素,将该元素移到下一位置</li>
     * <li>重复步骤3,直到找到已排序的元素小于或者等于新元素的位置</li>
     * <li>将新元素插入到该位置中</li>
     * <li>重复步骤2</li>
     * </ul>
     *
     * @param numbers
     */
    public static void insertSort(int[] numbers) {
        int size = numbers.length, temp, j;
        for(int i=1; i<size; i++) {
            temp = numbers[i];
            for(j = i; j > 0 && temp < numbers[j-1]; j--)
                numbers[j] = numbers[j-1];
            numbers[j] = temp;
        }
    }

    /**
     * 归并排序<br/>归并排序是建立在归并操作上的一种有效的排序算法,归并是指将两个已经排序的序列合并成一个序列的操作。参考代码如下:
     * <ul>
     * <li>申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列</li>
     * <li>设定两个指针,最初位置分别为两个已经排序序列的起始位置</li>
     * <li>比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置</li>
     * <li>重复步骤3直到某一指针达到序列尾</li>
     * <li>将另一序列剩下的所有元素直接复制到合并序列尾</li>
     * </ul>
     *
     * @param numbers
     */
    public static void mergeSort(int[] numbers, int left, int right) {
        int t = 1;// 每组元素个数
        int size = right - left + 1;
        while (t < size) {
            int s = t;// 本次循环每组元素个数
            t = 2 * s;
            int i = left;
            while (i + (t - 1) < size) {
                merge(numbers, i, i + (s - 1), i + (t - 1));
                i += t;
            }
            if (i + (s - 1) < right)
                merge(numbers, i, i + (s - 1), right);
        }
    }
    /**
     * 归并算法实现
     *
     * @param data
     * @param p
     * @param q
     * @param r
     */
    private static void merge(int[] data, int p, int q, int r) {
        int[] B = new int[data.length];
        int s = p;
        int t = q + 1;
        int k = p;
        while (s <= q && t <= r) {
            if (data[s] <= data[t]) {
                B[k] = data[s];
                s++;
            } else {
                B[k] = data[t];
                t++;
            }
            k++;
        }
        if (s == q + 1)
            B[k++] = data[t++];
        else
            B[k++] = data[s++];
        for (int i = p; i <= r; i++)
            data[i] = B[i];
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值