等概率随机函数的实现

题目:已知随机函数rand(),以p的概率产生0,以1-p的概率产生1,现在要求设计一个新的随机函数newRand(), 使其以1/n的等概率产生1~n之间的任意一个数。
解决思路:可以通过已知随机函数rand()产生等概率产生0和1的新随机函数
Rand(),然后调用k(k为整数n的二进制表示的位数)次Rand()函数,得到一个长度为k的0和1序列,以此序列所形成的整数即为1--n之间的数字。注意:从产生序列得到的整数有可能大于n,如果大于n的话,则重新产生直至得到的整数不大于n。
第一步:由rand()函数产生Rand()函数,Rand()函数等概率产生0和1。

[cpp]  view plain copy
  1. int Rand()  
  2. {  
  3.     int i1 = rand();  
  4.     int i2 = rand();  
  5.     if(i1==0 && i2==1)  
  6.         return 1;  
  7.     else if(i1==1 && i2==0)  
  8.         return 0;  
  9.     else  
  10.         return Rand();  
  11.     return -1;  
  12. }  
第二步:计算整数n的二进制表示所拥有的位数k,k = 1 +log2n(log以2为底n)
第三步:调用k次Rand()产生随机数。

[cpp]  view plain copy
  1. int newRand()  
  2. {  
  3.     int result = 0;  
  4.     for(int i = 0 ; i < k ; ++i)  
  5.     {  
  6.         if(Rand() == 1)  
  7.             result |= (1<<i);  
  8.     }  
  9.     if(result > n)  
  10.         return newRand();  
  11.     return result;  
  12. }  


题目:
给定一个函数rand5(),该函数可以随机生成1-5的整数,且生成概率一样。现要求使用该函数构造函数rand7(),使函数rand7()可以随机等概率的生成1-7的整数。
思路:
很多人的第一反应是利用rand5() + rand()%3来实现rand7()函数,这个方法确实可以产生1-7之间的随机数,但是仔细想想可以发现数字生成的概率是不相等的。rand()%3 产生0的概率是1/5,而产生1和2的概率都是2/5,所以这个方法产生6和7的概率大于产生5的概率。
正确的方法是利用rand5()函数生成1-25之间的数字,然后将其中的1-21映射成1-7,丢弃22-25。例如生成(1,1),(1,2),(1,3),则看成rand7()中的1,如果出现剩下的4种,则丢弃重新生成。
简单实现:

[cpp]  view plain copy
  1. int rand7()  
  2. {  
  3.     int x = 0;  
  4.     do  
  5.     {  
  6.         x = 5 * (rand5() - 1) + rand5();  
  7.     }while(x > 21);  
  8.     return 1 + x%7;  
  9. }  
我的备注:
    这种思想是基于,rand()产生[0,N-1],把rand()视为N进制的一位数产生器,那么可以使用rand()*N+rand()来产生2位的N进制数,以此类推,可以产生3位,4位,5位...的N进制数。这种按构造N进制数的方式生成的随机数,必定能保证随机,而相反,借助其他方式来使用rand()产生随机数(如 rand5() + rand()%3 )都是不能保证概率平均的。

    此题中N为5,因此可以使用rand5()*5+rand5()来产生2位的5进制数,范围就是1到25。再去掉22-25,剩余的除3,以此作为rand7()的产生器。

题目:
已知有个rand7()的函数,返回1到7随机自然数,让利用这个rand7()构造rand10() 随机1~10。
分析:要保证rand10()在整数1-10的均匀分布,可以构造一个1-10*n的均匀分布的随机整数区间(n为任何正整数)。假设x是这个1-10*n区间上的一个随机整数,那么x%10+1就是均匀分布在1-10区间上的整数。由于(rand7()-1)*7+rand7()可以构造出均匀分布在1-49的随机数(原因见下面的说明),可以将41~49这样的随机数剔除掉,得到的数1-40仍然是均匀分布在1-40的,这是因为每个数都可以看成一个独立事件。
下面说明为什么(rand7()-1)*7+rand7()可以构造出均匀分布在1-49的随机数:
首先rand7()-1得到一个离散整数集合{0,1,2,3,4,5,6},其中每个整数的出现概率都是1/7。那么(rand7()-1)*7得到一个离散整数集合A={0,7,14,21,28,35,42},其中每个整数的出现概率也都是1/7。而rand7()得到的集合B={1,2,3,4,5,6,7}中每个整数出现的概率也是1/7。显然集合A和B中任何两个元素组合可以与1-49之间的一个整数一一对应,也就是说1-49之间的任何一个数,可以唯一确定A和B中两个元素的一种组合方式,反过来也成立。由于A和B中元素可以看成是独立事件,根据独立事件的概率公式P(AB)=P(A)P(B),得到每个组合的概率是1/7*1/7=1/49。因此(rand7()-1)*7+rand7()生成的整数均匀分布在1-49之间,每个数的概率都是1/49。
程序:

[cpp]  view plain copy
  1. int rand_10()  
  2. {  
  3.     int x = 0;  
  4.     do  
  5.     {  
  6.         x = 7 * (rand7() - 1) + rand7();  
  7.     }while(x > 40);  
  8.     return x % 10 + 1;  
  9. }  
注:由朋友问为什么用while(x>40)而不用while(x>10)呢?原因是如果用while(x>10)则有40/49的概率需要循环while,很有可能死循环了。
问题描述
已知random3()这个随机数产生器生成[1, 3]范围的随机数,请用random3()构造random5()函数,生成[1, 5]的随机数?
问题分析
如何从[1-3]范围的数构造更大范围的数呢?同时满足这个更大范围的数出现概率是相同的,可以想到的运算包括两种:加法和乘法
考虑下面的表达式:
3 * (random3() – 1) + random3();
可以计算得到上述表达式的范围是[1, 9]  而且数的出现概率是相同的,即1/9
下面考虑如何从[1, 9]范围的数生成[1, 5]的数呢?
可以想到的方法就是 rejection sampling 方法,即生成[1, 9]的随机数,如果数的范围不在[1, 5]内,则重新取样
解决方法

[cpp]  view plain copy
  1. int random5()  
  2. {  
  3.     int val = 0;  
  4.     do  
  5.     {  
  6.         val = 3 * (random3() - 1) + random3();  
  7.     }while(val > 5);  
  8.     return val;  
  9. }  
归纳总结
将这个问题进一步抽象,已知random_m()随机数生成器的范围是[1, m] 求random_n()生成[1, n]范围的函数,m < n && n <= m *m
一般解法:

[cpp]  view plain copy
  1. int random_n()  
  2. {  
  3.     int val = 0;  
  4.     int t;   //t为n的最大倍数,且满足t<m*m  
  5.     do  
  6.     {  
  7.         val = m * (random_m() - 1) + random_m();  
  8.     }while(val > t);  
  9.     return val;  
  10. }  

给定一个函数rand()能产生0到n-1之间的等概率随机数,问如何产生0到m-1之间等概率的随机数?

[cpp]  view plain copy
  1. int random(int m , int n)  
  2. {  
  3.     int k = rand();  
  4.     int max = n-1;  
  5.     while(k < m)  
  6.     {  
  7.         k = k*n + rand();  
  8.         max = max*n + n-1;  
  9.     }  
  10.     return k/(max/n);  
  11. }  
如何产生如下概率的随机数?0出1次,1出现2次,2出现3次,n-1出现n次?

[cpp]  view plain copy
  1. int random(int size)  
  2. {  
  3.     while(true)  
  4.     {  
  5.         int m = rand(size);  
  6.         int n = rand(size);  
  7.         if(m + n < size)  
  8.             return m+n;  
  9.     }  
  10. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值