拉格朗日乘子(百度百科)

 
  拉格朗日乘子法 拉格朗日乘子(Lagrange multiplier)
  基本的拉格朗日乘子法(又称为拉格朗日乘数法),就是求函数f(x1,x2,...)在g(x1,x2,...)=0的约束条件下的极值的方法。其主要思想是引入一个新的参数λ(即拉格朗日乘子),将约束条件函数与原函数联系到一起,使能配成与变量数量相等的等式方程,从而求出得到原函数极值的各个变量的解。
  具体方法:
  假设需要求极值的目标函数 (objective function) 为 f(x,y),限制条件为 φ(x,y)=M
  设g(x,y)=M-φ(x,y)
  定义一个新函数
  F(x,y,λ)=f(x,y)+λg(x,y)
  则用偏导数方法列出方程:
  ∂F/∂x=0
  ∂F/∂y=0
  ∂F/∂λ=0
  求出x,y,λ的值,代入即可得到目标函数的极值
  扩展为多个变量的式子为:
  F(x1,x2,...λ)=f(x1,x2,...)+λg(x1,x2...)
  则求极值点的方程为:
  ∂F/∂xi=0(xi即为x1、x2……等自变量)
  ∂F/∂λ=g(x1,x2...)=0
  以上内容在《数学手册》当中有。另外,可以将这种把约束条件乘以λ(即不定乘子)后加到待求函数上的求极值方法推广到变分极值问题及其它极值问题当中,理论力学当中对非完整约束的处理方法就是利用变分法当中的拉格朗日乘子法。
  拉格朗日乘子法的用途:
  从经济学的角度来看,λ代表当约束条件变动时,目标函数极值的变化。因为∂F/∂M=λ,当M增加或减少一个单位值时,F会相应变化λ。
  例如,假设目标函数代表一个工厂生产产品的数量,约束条件限制了生产中投入的原料和人力的总成本,我们求目标函数的极值,就是要求在成本一定的条件下,如何分配利用人力和原料,从而使得生产量达到最大。此时λ便代表,当成本条件改变时,工厂可达到的生产量最大值的变化率。
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读