为什么2TB的硬盘只显示1863GB?

作者分享了自己在重装系统后发现的硬盘容量显示问题,解释了电脑显示的硬盘容量小于标称值的原因,即硬盘制造商使用1000作为换算基准而非二进制的1024,导致2TB的实际显示容量约为1863GB。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前两天强迫症犯了,主要由于刚购买电脑时啥都不懂,导致磁盘分区十分杂乱!重装了系统,恢复到win10,赏心悦目~

但是随之也发现一个问题,就是我本身2TB的磁盘容量,为何只显示1863.00GB!不是应该2000GB(或者2048GB)吗?!

百思不得其解,后来查到一篇博客科普--电脑显示的硬盘容量为什么比标称的要小?_在电脑中显示出来的硬盘容量一般情况下要比硬盘容量的标称值-CSDN博客豁然开朗,只能说太坑啦!

因为电脑本省的二进制的,容量单位的换算呢本来是2的10次方:1024。可是实际上,硬盘制造厂商觉得这个数字不好计算,就统一用了一个整数:1000。

这样

1KB=1000 B (1 * 1000 / 1024 = 0.976562 KB) 实际显示 1000 B

1MB= 1000 KB (0.976562 * 1000 / 1024 = 0.953674 MB) 实际显示 976 KB

1GB= 1000 MB  (0.953674 * 1000 / 1024 = 0.931322 GB) 实际显示 953 MB

1TB= 1000 GB  (0.931322 * 1000 / 1024 = 0.909494 TB) 实际显示 931 GB 

如果按照这个比例继续计算,我们可以得到如下结果:

2TB = 2 * (0.931322 * 1000 / 1024) ≈ 1.862645 TB≈1863.00GB

果真对上了,啊啊啊啊啊,坑!

内容概要:本文介绍了一种利用遗传算法优化BP神经网络进行回归预测的方法,并提供了完整的MATLAB程序代码。主要内容包括数据预处理、遗传算法与BP神经网络的结合、适应度函数的设计以及最终的预测结果展示。文中详细解释了如何将Excel格式的数据导入MATLAB并进行归一化处理,如何定义适应度函数来优化BP神经网络的参数(如激活函数和学习率),并通过遗传算法找到最优解。实验结果显示,在某工业数据集上,经过遗传算法优化后的BP神经网络预测精度显著提高,从原来的0.82提升到了0.91。此外,还提到了一些实用技巧,比如调整遗传代数、修改激活函数等方法进一步改进模型性能。 适合人群:对机器学习有一定了解的研究人员和技术爱好者,特别是那些希望深入了解遗传算法与BP神经网络结合应用的人士。 使用场景及目标:适用于需要快速构建高效回归预测模型的场景,尤其是当传统BP神经网络无法达到预期效果时。通过本篇文章的学习,读者能够掌握一种有效的优化手段,从而提高模型的泛化能力和预测准确性。 其他说明:代码可以直接应用于新的数据集,只需确保数据格式符合要求(Excel格式)。对于想要深入探索或改进现有模型的人来说,还可以尝试更换不同的激活函数或其他调节方式来获得更好的表现。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值