鸿蒙舆情监测系统源码分析——功能架构

本文深入分析鸿蒙舆情监测系统的功能架构,涵盖数据输入(爬虫系统)、处理(网页结构化、数据分析)和输出(存储与检索)。系统采用ElasticSearch存储数据,支持多种数据采集方式,通过链式分析流程提供定制化服务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在前面几篇文章中,我们介绍了舆情监测系统的基本概念以及基本使用方法,接下来我们以鸿蒙舆情系统为例,从源码角度分析舆情监测系统的功能架构。

舆情监测系统的输入、处理和输出

输入

与一般的企业软件不同,舆情监测系统的数据全部来自互联网,经过对各式各样的数据进行清洗、加工、分析、存储,从而为客户提供有使用价值的数据。

因此,舆情监测系统的输入是互联网数据,包括网站、论坛、博客、微博、贴吧、平媒、视频号、头条等。要想将各种类型的网络平台数据统一接入到系统中来,需要一个强大的数据采集系统(又称爬虫系统)。在遵循互联网数据采集规范的前提下,针对不同的平台类型使用不同的采集方法。

鸿蒙舆情监测系统的采集方法主要有以下几类:

1、通用采集方式:这种方式使用最为简单,只需要指定一个入口URL地址即可发起采集,爬虫系统从入口地址开始逐层搜索,将采集到的数据丢给消息池,直到采集结束。

2、配置采集方式:这种方式在第一种方式的基础上,增加了一些配置工作,目的是将采集的范围更加明确,提高采集的工作效率。

3、脚本采集方式:一些特定的站点无法使用前两种方式完成采集,这时可以编写脚本,从而完成在采集或者解析过程中特定的工作。

4、浏览器插件采集:如果无法通过前面几种方式完成,可以使用浏览器插件采集的方式,通过编写插件脚本,通过系统将插件打包下载安装,按照指定的操作流程即可完成数据采集。

5、APP插件采集:如果数据来源是手机APP,那么可以使用APP插件采集完成数据收集工作。

以上,是鸿蒙舆情监测系统的典型数据采集方式介绍。

处理

通过数据采集阶段获得的数据,只是原始数据,这些数据没有经过筛选和加工,很难为我们使用。因此,接下来一个重要的工作,就是将采集到的原始数据进行加工处理。这一过程我们通过一张图来呈现:

在上面的流程图里,我们可以看到原始网页时如何变成结构化数据的。

网页结构化完成以后,需要对数据进行初步的分析,具体流程如下:

在数据分析的流程里,鸿蒙舆情系统实现了链式分析流程,即可以根据不同的数据选择需要的分析过程,形成最终的数据。比如有些用户关注的是某些事件的转发轨迹,那么分析流程就需要包含转载分析;而有些客户则关注网民态度,那么就需要引入观点分析过程。

另外,针对日益成熟的AI分析,也可以在这一阶段进行引入。

输出

在经过数据采集和处理之后,需要将结构化的数据保存起来,以便后续可以随时取用。舆情系统的数据量和采集能力相关,一般配置了2台采集器的舆情软件,每天的数据量在50万上下,一个月就达到1500万,一年的累计数量超过1亿条。因此需要对舆情数据存储进行设计。首先我们使用文档索引系统ElasticSearch(简称ES)作为舆情数据的存储容器。ES的特点是检索速度快,支持多种查询方式,存储空间可动态扩充,集群节点可动态扩容。其次,如果将所有数据放在ES的一个文档里,无法充分体现ES的优势,因此可以将数据按时间或者类型进行分别存储,特定时间的数据或者特定类型的数据定向查询,这样可以大大提升查询效率。

舆情监测系统的功能架构

上一节重点介绍了舆情系统的数据来源、处理和存储。有了这些数据以后,通过舆情监测系统的门户网站,可以对这些数据进行各种聚合展示,生成相应的报告。

下面的图是舆情监测系统的总体功能架构图,通过这张图,可以全面了解一个舆情监测系统的主要模块与能力。

总体而言,一个舆情系统需要包含以下模块:

1、数据管理模块:用来管理采集源、采集能力、监测采集进度

2、数据采集模块:分布式爬虫,采集互联网各种类型数据

3、数据分析模块:对采集到的数据进行分析处理存储

4、系统配置模块:包括组织机构,角色权限人员等,以及企业相关的参数配置

5、系统展示门户:实现舆情信息的检索、聚合、生成报告、大屏展示等

6、其他辅助模块:包括预警推送(微信消息、邮件提醒)、外部接口对接等

以上,我们从源码层级对鸿蒙舆情监测系统进行了功能架构分析,简述了舆情系统的典型流程,希望能给相关人员提供参考与帮助。

### 关于舆情监测系统源码下载 舆情监测系统是一种用于实时监控网络上特定话题或事件的情绪趋势的技术解决方案。通过分析社交媒体、新闻网站和其他在线平台的内容,它可以为企业和个人提供有价值的信息支持决策过程。 #### 鸿蒙舆情监测系统 鸿蒙舆情监测系统是一个典型的例子,其功能架构可以从输入、处理和输出三个主要部分来理解[^1]。然而,目前并没有官方确认的鸿蒙舆情监测系统的具体GitHub开源地址。如果需要类似的开源项目作为参考,可以考虑以下替代方案: --- #### 替代开源项目的推荐 1. **SpiderBook**: SpiderBook 是一个专注于 Python 爬虫技术的开源项目,适用于数据采集阶段的需求[^2]。该项目不仅提供了丰富的爬虫实现代码,还附带详细的文档说明,适合初学者学习和研究。 2. **豆瓣微博数据分析系统**: 这个项目利用 Flask 构建了一个完整的前后端交互框架,并实现了数据可视化功能[^4]。虽然它的核心目标并非专门针对舆情监测,但它展示了如何构建一个高效的数据分析系统,可作为借鉴。 3. **中文情感分析模型**: 如果您关注的是舆情中的情绪分类,则 NLP 中文情感分析模型可能是更贴合需求的选择[^5]。该类项目通常会涉及机器学习算法的应用,例如 LSTM 或 Transformer 结构,能够有效评估文本的情感极性。 --- #### 如何查找合适的 GitHub 开源项目? 为了找到与舆情监测相关的高质量开源项目,请按照以下方式操作: - 使用关键词搜索:尝试在 GitHub 上输入诸如 “opinion mining”, “sentiment analysis”, 或者 “public opinion monitoring system” 的术语。 - 查看 Star 数量:优先选择那些获得较多社区认可(高星数)的仓库。 - 浏览 README 文件:确保所选项目具备清晰的目标描述和技术栈介绍。 以下是几个可能匹配您的需求的实际链接模板(需自行验证最新状态): ```plaintext https://github.com/search?q=public+opinion+monitoring&type=repositories ``` --- #### 示例代码片段 下面展示了一段简单的 Python 伪代码,用来模拟从互联网抓取评论并初步判断正面/负面倾向的过程: ```python import requests from textblob import TextBlob def fetch_comments(url): response = requests.get(url) if response.status_code == 200: return response.text.splitlines() else: raise Exception("Failed to retrieve data") def analyze_sentiment(comments): results = [] for comment in comments: blob = TextBlob(comment) polarity = blob.sentiment.polarity sentiment = 'Positive' if polarity > 0 else ('Negative' if polarity < 0 else 'Neutral') results.append((comment, sentiment)) return results if __name__ == "__main__": url = "http://example.com/comments" try: comments = fetch_comments(url) sentiments = analyze_sentiment(comments[:10]) # 只分析前十个样本 print(sentiments) except Exception as e: print(e) ``` 此脚本依赖 `requests` 和 `textblob` 库完成基础的功能演示。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值