CODEVS_1034 家园 网络流 最大流

本文探讨了一种解决紧急情况下大规模人口迁移问题的算法,利用太空船进行快速宇宙转移。通过构建时间与空间的关系网络,实现最优路径规划,确保所有人安全到达目的地。该算法特别适用于地球环境崩溃后,急需移民至月球的情况。
摘要由CSDN通过智能技术生成

原题链接:http://codevs.cn/problem/1034/

题目描述 Description

由于人类对自然的疯狂破坏,人们意识到在大约2300年之后,地球不能再居住了,于是在月球上建立了新的绿地,以便在需要时移民。令人意想不到的是,2177年冬由于未知的原因,地球环境发生了连锁崩溃,人类必须在最短的时间内迁往月球。
现有n个太空站处于地球与月球之间(编号1..n),m艘公共交通太空船在其中来回穿梭,每个太空站Si可容纳无限的人,每艘太空船pi只可容纳Hpi人。对于每一艘太空船pi,将周期性地停靠一系列的太空站(Si1,Si2…Sir),如:(1,3,4)表示停靠太空站1 3 4 1 3 4 1 3 4 …。 任一艘太空船从任一个太空站驶往另一个任意的太空站耗时为1。人只能在太空船停靠太空站(或地球、月球)时上船或下船。初始时的人全在地球上,太空船全在初始站(太空船pi处于Si1),目标是让所有的人尽快地全部转移到月球上。

输入描述 Input Description

文件第一行为三个正整数 n(太空站个数)、 m(太空船个数)、 k(需要运送的地球上的人的个数),其中 1<=m<=13, 1<=n<=20, 1<=k<=50。
接下来的n行给出了太空船的信息,第i+1行说明太空船pi,此行第一个数表示pi可容纳的人数Hpi,第二个数表示pi停靠一个周期的太空站个数r,1<=r<=n+2, 随后r个数便是停靠的太空站的编号(Si1,Si2,…,Sir), 地球用0表示,月球用-1表示。0时刻时,所有太空船都在初始站,随后开始运行,在时刻1,2,3…等正点时刻各艘太空船停靠相应的太空站,即人只有在0,1,2…等正点时刻才能上下太空船。

输出描述 Output Description

文件只有一个数,若问题有解,输出完成全部人员安全转移的时刻,否则输出0。

样例输入 Sample Input

2 2 1 

1 3 0 1 2

1 3 1 2 –1

样例输出 Sample Output

5

数据范围及提示 Data Size & Hint

 1<=m<=13, 1<=n<=20, 1<=k<=50。


枚举时间t,每增加一单位时间,就增加一列点,这一列的点的序号是(0,t),(1,t)...(n,t),其中第一个数字表示太空站(0是地球,n是月球),第二个数字表示的是时间。然后从(i,t-1)到(i,t)连一条容量为INF的边(太空站可以停留无限的人),从地球(超级源点)连一条INF的边到(0,t),从(n,t)连一条INF的边到月球(超级汇点),然后考虑所有的太空船,设其中一个太空船的移动为a0,a1,a2....aT-1,那么连接一条从(a[(t-1)%T],t-1)到(a[t%T],t),容量为此太空船容量的边,求最大流,如果最大流的大于了总人数,就跳出,答案就是当前的时间。

详见代码:

#include<iostream>
#include<cstring>
#include<vector>
#include<queue>
#include<algorithm>
#include<string>
#include<cstdio>
#define MAX_M 201
#define MAX_V 100861
#define INF 10086111
using namespace std;

struct edge{int to,cap,rev;};
vector<edge> G[MAX_V];
vector<int> ship[MAX_M];
//bool nodeColor[MAX_N];
const int moon=MAX_V-1,earth=MAX_V-2;

int N,M,K;

int shipCap[MAX_M];
int father[MAX_M];

bool used[MAX_V];

void init()
{
    for(int i=0;i<=N+1;i++)father[i]=i;
}

int Find(int u)
{
    if(father[u]==u)return u;
    else return father[u]=Find(father[u]);
}

void unionSet(int u,int v)
{
    int x=Find(u),y=Find(v);
    if(x==y)return;
    father[x]=y;
}

bool Same(int u,int v)
{
    return Find(u)==Find(v);
}

bool check()
{
    for(int i=0;i<M;i++)
    {
        int u=ship[i][0];
        for(int j=1;j<ship[i].size();j++)
            unionSet(u,ship[i][j]);
    }
    return Same(0,N+1);
}

void add_edge(int from,int to,int cap)
{
    G[from].push_back((edge){to,cap,G[to].size()});
    G[to].push_back((edge){from,0,G[from].size()-1});
}

int dfs(int v,int t,int f)
{
    if(v==t)return f;
    used[v]=1;
    for(int i=0;i<G[v].size();i++)
    {
        edge &e=G[v][i];
        if(!used[e.to]&&e.cap>0)
        {
            int d=dfs(e.to,t,min(f,e.cap));
            if(d>0)
            {
                e.cap-=d;
                G[e.to][e.rev].cap+=d;
                return d;
            }
        }
    }
    return 0;
}

int max_flow(int s,int t)
{
    int flow=0;
    while(1)
    {
        memset(used,0,sizeof(used));
        int f=dfs(s,t,INF);
        if(f==0)return flow;
        flow+=f;
    }
}
char cc;
int flo=0;
int main()
{
    cin>>N>>M>>K;
    for(int i=0;i<M;i++)
    {
        cin>>shipCap[i];
        int r;
        cin>>r;
        for(int j=0;j<r;j++)
        {
            int ss;
            cin>>ss;
            if(ss==-1)ss=N+1;
            ship[i].push_back(ss);
        }
    }

    if(!check()){cout<<0<<endl;return 0;}

    int nowNode=0;
    N++;
    int ans=0;
    //cout<<N<<endl;
    //cin>>cc>>cc;   
    for(int t=0;;t++)
    {
        for(int i=0;i<=N;i++)
        {
            int v=i+nowNode;
            if(t!=0)
                add_edge(v-N-1,v,INF);
            if(i==0)
                add_edge(earth,v,INF);
            if(i==N)
                add_edge(v,moon,INF);
        }
        for(int i=0;i<M&&t!=0;i++)
        {
            int tt=t%ship[i].size();
            int fr=ship[i][(tt-1<0)?(tt-1+ship[i].size()):(tt-1)]+nowNode-N-1;
            int go=ship[i][tt]+nowNode;
            add_edge(fr,go,shipCap[i]);
        }
        flo+=max_flow(earth,moon);
        
        if(flo>=K){ans=t;break;}
        nowNode+=N+1;
        /*for(int i=0;i<nowNode;i++)
            for(int j=0;j<G[i].size();j++)
                cout<<i<<" "<<G[i][j].to<<" "<<G[i][j].cap<<endl;
        cout<<flo<<endl;
        cout<<"--------"<<endl;
        cin>>cc;*/
        if(t>100){cout<<0<<endl;return 0;}
    }
    cout<<ans<<endl;
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值