- 博客(71)
- 资源 (2)
- 收藏
- 关注
原创 深度学习姿态估计实战:基于ONNX Runtime的YOLOv8 Pose部署全解析
本文将详细介绍如何脱离YOLO官方环境,使用ONNX Runtime部署YOLOv8姿态估计模型。内容包括模型加载、图像预处理(Letterbox缩放和填充)、推理执行、输出解码(边界框和关键点处理)、非极大值抑制(NMS)以及结果可视化。文章还将讨论部署中的性能优化和常见问题。
2025-06-05 10:29:29
725
原创 ONNX Runtime 部署语义分割模型
ONNX Runtime 是一个跨平台的高性能推理引擎,支持多个硬件平台,如 CPU、GPU、以及一些定制硬件。ONNX 作为开放的深度学习框架标准,可以将来自不同深度学习框架(如 PyTorch、TensorFlow、Keras 等)的模型转换为 ONNX 格式。ONNX Runtime 的优势在于能够为多种平台提供高效的推理执行,并且可以轻松集成到生产环境中。语义分割是计算机视觉中的一项重要任务,目标是为图像中的每个像素分配一个标签,通常应用于医学影像分析、自动驾驶、卫星图像分析等领域。
2025-03-18 11:14:27
599
原创 数据脱敏工具:基于 FFmpeg 的视频批量裁剪
通过上述步骤,我们可以将一个使用 FFmpeg 进行视频裁剪的 Python 脚本打包成独立的可执行文件,并确保在没有安装 FFmpeg 的计算机上能够正常运行。希望本文对你有所帮助。如果有任何问题或建议,请随时留言交流。
2024-11-21 17:19:32
1237
原创 视频批量裁剪工具
本工具使用 Python 和 FFmpeg 实现视频批量裁剪功能,并将裁剪后的视频保存为 MP4 格式。用户可以指定输入文件夹和输出文件夹,以及裁剪区域的坐标。
2024-11-01 11:41:50
598
原创 批量图像裁剪工具
用于批量裁剪指定文件夹中的JPEG图像。该脚本可以递归地遍历文件夹及其所有子文件夹,并将裁剪后的图像保存到指定的输出文件夹中,同时保留原有的文件结构。
2024-10-31 16:52:10
282
原创 双边滤波平滑锯齿
双边滤波(Bilateral Filtering)是一种图像处理技术,主要用于图像的平滑或去噪,同时保留边缘细节。它结合了空间邻近度(space proximity)和像素值相似度(pixel value similarity)两个因素来对图像中的每个像素进行加权平均。保留边缘:与传统的高斯模糊不同,双边滤波能够在去除噪声的同时较好地保留图像中的边缘。平滑处理:适用于需要保留细节但减少噪声的应用场景,如图像美化、纹理分析等。空间高斯权重:考虑像素之间的空间距离,距离越近权重越高。
2024-10-12 11:15:50
352
原创 YOLOv8进行对象检测与关键点定位:实时计算关键点间实际距离并可视化
该脚本主要实现了使用预训练的YOLO模型对输入图片进行对象检测与关键点定位,计算特定关键点之间的实际距离,并在图片上可视化这些信息(包括边界框、关键点标记、实际距离文字标注),最后保存处理后的图片。
2024-06-24 11:19:43
583
原创 基于倒数类频率的语义分割权重计算方法
本文档介绍了一个Python脚本,用于处理包含多个类别的图像数据库。脚本首先统计每个图像中像素值的出现次数,然后计算所有图像的综合频率,接着基于这些频率计算每个类别的倒数类频率权重。整个过程采用并行处理以提高效率。该脚本的目标是为一个多类别图像数据库中的每个类别分配一个权重,权重的计算基于该类别的像素频率。权重的计算方式是:先计算所有类别的频率的中位数,然后用这个中位数除以每个类别的频率。这样的权重可以用于后续的图像处理任务,例如图像分类或分割。
2024-05-15 14:22:33
357
原创 语义分割离线数据增强——Albumentations实现
A.HorizontalFlip(p=0.8) 和 A.VerticalFlip(p=0.7):分别以 80% 和 70% 的概率水平翻转和垂直翻转图像及掩模,增加图像的方向性变化。A.Resize(height=512, width=512, interpolation=cv.INTER_CUBIC, always_apply=False, p=1):始终将图像和掩模统一缩放到 512x512 大小,使用三次插值法保持图像质量。
2024-04-07 11:11:44
971
原创 OpenCV构建交互式图像距离测量工具
在计算机视觉和图形学应用中,准确测量图像上的点之间距离是一项常见且重要的任务。本篇技术博客将详细介绍如何利用Python编程语言和OpenCV库构建一个交互式的图像距离测量工具。我们将通过编写一个名为ImageProcessor的类,让用户能够在图像上点击选取点,并实时显示两点间的实际距离(以毫米为单位)。下面让我们一起深入探讨代码实现及其核心功能。
2024-04-03 15:45:08
1391
原创 OpenCV:绘制图像中mask的最小外接矩形
在计算机视觉和图像处理中,我们经常需要计算直线与外接矩形边的交点。这在进行边缘检测、图像分割、目标跟踪等任务时非常有用。本文将介绍如何使用OpenCV和NumPy计算直线与外接矩形边的交点,并展示如何在实际图像中绘制直线。
2024-01-24 11:41:23
1638
原创 语义分割结果后处理与可视化:轮廓、中心点和重心标记
该脚本通过OpenCV实现了对语义分割结果的后处理和可视化,标记了轮廓、中心点和重心。用户可以根据实际需求调整阈值和颜色,以获得更符合自己应用场景的可视化效果。
2024-01-18 11:07:57
1819
原创 图像质量评估:使用 SSIM 计算图像相似性
在图像处理领域,衡量两幅图像之间相似性的一种常见方法是使用结构相似性指数(SSIM)。SSIM 是一种全参考的图像质量评估指标,它不仅考虑了图像的亮度、对比度,还考虑了结构信息。在本文中,我们将介绍一个使用 Python 和 OpenCV 实现的 SSIM 计算脚本,并使用该脚本评估两幅图像的相似性。
2023-12-29 11:31:25
863
原创 批量图像分割评估脚本:使用Python和OpenCV
在计算机视觉任务中,图像分割是一项重要的任务,而对分割结果进行评估则是验证模型性能的关键一环。本文将介绍如何使用Python和OpenCV编写一个简单的批量图像分割评估脚本,以评估分割模型的性能。
2023-12-27 17:49:20
978
原创 图像分割模型GUI应用:基于Tkinter和MMseg实现
本篇博客介绍了一个使用Python的Tkinter库和MMseg图像分割库创建的图像分割模型GUI应用。该应用允许用户加载图像文件夹,浏览加载的图像,并对选定的图像执行分割推断,展示分割结果。这个应用演示了如何使用图形界面与深度学习模型结合,以交互式的方式进行图像分割任务。介绍图像分割任务的概念和应用领域,强调图像分割在计算机视觉中的重要性。说明使用Python的Tkinter库创建的图像分割GUI应用的目的和功能。
2023-08-30 14:18:19
514
原创 深度学习图像分割:使用OpenVINO进行高效推理的Python实现
OpenVINO(Open Visual Inference & Neural Network Optimization)是Intel推出的一套用于推理和优化深度学习模型的工具套件。其中,openvino.inference_engine是OpenVINO工具套件中的一部分,用于进行推理(inference)。openvino.inference_engine提供了一组Python API,使得用户可以在Python环境中加载、配置、推理和优化深度学习模型。
2023-08-08 14:28:27
11
原创 图像中不规则物体的长轴与短轴:OpenCV实现指南
7.使用OpenCV的cv2.ellipse()函数在原始图像上绘制椭圆,并使用cv2.circle()函数在图像上绘制长轴和短轴的四个端点,并分别用红色和蓝色表示。3.通过使用OpenCV的cv2.findContours()函数,找到图像中的所有轮廓。4.遍历所有轮廓,如果轮廓点的数量大于等于5个,则将这个轮廓拟合为一个椭圆。8.最后,显示带有椭圆和端点的图像,等待用户按下任意键后关闭显示窗口。6.使用计算得到的椭圆信息,计算出长轴和短轴的端点坐标。1.首先,读取图像并将其转换为灰度图像。
2023-07-26 09:01:13
2324
原创 交互式标注工具-Paddlelabel
PaddleLabel 是基于飞桨 PaddlePaddle 各个套件功能提供的配套标注工具。目前支持对分类、检测、分割、OCR 四种常见的计算机视觉任务数据集进行标注和管理,除基础的手动标注功能外也支持深度学习辅助标注,可以有效地提升标注效率。重点是free free free!!!优点:1.简单 一行 pip install 安装,手动标注直观易操作,机器学习后端安装即用无需复杂配置,极易上手2.高效支持交互式分割和多种预标注,显著提升标注效率和精度。
2023-06-29 10:32:09
6140
27
原创 模型量化小结
针对深度学习算法模型参数大,部署后会占用内存、计算量增加及能耗巨大。不利于后期的一个维护,是因为每一个任务单独进行。多任务学习可以有效的缓解以上问题。但多任务学习可能会带来一些问题,相似任务之间出现混乱。难训练,可以从另外一个角度出发,对模型进行量化:其主要是通过减少原始模型参数的数量或比特数来实现对内存和计算需求的降低,从而进一步降低能耗。
2023-04-04 14:55:24
1458
原创 mmsegmentation 之修改输入通道
open-mmlab有许多非常实用的框架,其中目标检测的话mmdetection确实很实用。但语义分割的话当属mmsegmentation,这篇博客介绍mmsegmentation如何将输入图像通道数修改为单通道。3.吹一波,mmsegmentation确实很好用,接着第二步,这个地方不管你是用自定义数据集还是其他数据集,将transformer.py里的rgb2gray添加到训练验证数据处理阶段,举个例子4.此时你可能会遇到一些bug,第三步完后进行编译后直接训练可能会出现以下错误。网上解释的
2022-11-23 09:57:57
2052
7
原创 mmsegmentation 训练自己的数据集
open-mmlab有许多非常实用的框架,其中目标检测的话mmdetection确实很实用。但语义分割的话当属mmsegmentation,这篇博客就是介绍如何用mmsegmentation训练自己的数据集。mmdetection的环境mmsegmentation也可以用,有mmdetection环境的话就可以不用重新搭建了给个代码链接mmsegmentationmmsegmentation目录下新建一个data用于存放自己的数据集6.自己的任务可能类别与VOC类别不一样,需要对class进行修
2022-09-29 11:46:44
10864
13
原创 Unet系列论文总结
看了大概十篇左右Unet系列的论文,与原始Unet相比,性能虽然有一定的提升。但是模型的复杂程度也在增加,参数量、计算时间大大增多。也不是说小修小补不可以,大部分人还是做着小修小补的工作。并没有太多的亮点,哈哈哈,借用老板的话来说你就算做不出来也要学会去评判一个工作是否是个好工作。期待看到有突破性的工作。
2022-09-26 14:27:15
4603
原创 YOLO V5 实现课堂行为检测
课堂行为检测3.数据集划分及准备4.数据加载5.自定义配置文件6.训练7.测试测试效果不错,有需要的私聊。
2022-09-15 17:31:37
8609
55
转载 ConvMAE: Masked Convolution Meets Masked Autoencoders
Self-Supervised Learning,又称为自监督学习,机器学习分为有监督学习,无监督学习和半监督学习。而 Self-Supervised Learning 是无监督学习里面的一种,主要是希望能够学习到一种通用的特征表达用于下游任务 (Downstream Tasks) 。其主要的方式就是通过自己监督自己。作为代表作的 kaiming 的 MoCo 引发一波热议, Yann Lecun也在 AAAI 上讲 Self-Supervised Learning 是未来的大势所趋。ConvMAE: M
2022-08-31 10:52:07
855
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人