LeetCode第164场周赛:5274. 停在原地的方案数(动态规划)

有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。

每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。

给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。

由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。

 

示例 1:

输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动
示例  2:

输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动
示例 3:

输入:steps = 4, arrLen = 2
输出:8
 

提示:

1 <= steps <= 500
1 <= arrLen <= 10^6

思路:dp[i][j]:走i步走到位置j的方案数

class Solution {
	
	private int mod=1000000007;
	
    public int numWays(int steps, int arrLen) {
        
    	if(arrLen==0 || steps==0) return 0;
    	
    	int[][] dp=new int[steps+2][steps+2];
    	dp[0][0]=1;
        for(int i=1;i<=steps;i++)
        	for(int j=0;j<i && j<arrLen;j++) {
        		dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
        		if(j-1>=0) dp[i][j-1]=(dp[i][j-1]+dp[i-1][j])%mod;
        		if(j+1<arrLen) dp[i][j+1]=(dp[i][j+1]+dp[i-1][j])%mod;
        	}
        return dp[steps][0];
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值