有一个长度为 arrLen 的数组,开始有一个指针在索引 0 处。
每一步操作中,你可以将指针向左或向右移动 1 步,或者停在原地(指针不能被移动到数组范围外)。
给你两个整数 steps 和 arrLen ,请你计算并返回:在恰好执行 steps 次操作以后,指针仍然指向索引 0 处的方案数。
由于答案可能会很大,请返回方案数 模 10^9 + 7 后的结果。
示例 1:
输入:steps = 3, arrLen = 2
输出:4
解释:3 步后,总共有 4 种不同的方法可以停在索引 0 处。
向右,向左,不动
不动,向右,向左
向右,不动,向左
不动,不动,不动
示例 2:
输入:steps = 2, arrLen = 4
输出:2
解释:2 步后,总共有 2 种不同的方法可以停在索引 0 处。
向右,向左
不动,不动
示例 3:
输入:steps = 4, arrLen = 2
输出:8
提示:
1 <= steps <= 500
1 <= arrLen <= 10^6
思路:dp[i][j]:走i步走到位置j的方案数
class Solution {
private int mod=1000000007;
public int numWays(int steps, int arrLen) {
if(arrLen==0 || steps==0) return 0;
int[][] dp=new int[steps+2][steps+2];
dp[0][0]=1;
for(int i=1;i<=steps;i++)
for(int j=0;j<i && j<arrLen;j++) {
dp[i][j]=(dp[i][j]+dp[i-1][j])%mod;
if(j-1>=0) dp[i][j-1]=(dp[i][j-1]+dp[i-1][j])%mod;
if(j+1<arrLen) dp[i][j+1]=(dp[i][j+1]+dp[i-1][j])%mod;
}
return dp[steps][0];
}
}