给定一个包含非负数的数组和一个目标整数 k,编写一个函数来判断该数组是否含有连续的子数组,其大小至少为 2,总和为 k 的倍数,即总和为 n*k,其中 n 也是一个整数。
示例 1:
输入: [23,2,4,6,7], k = 6
输出: True
解释: [2,4] 是一个大小为 2 的子数组,并且和为 6。
示例 2:
输入: [23,2,6,4,7], k = 6
输出: True
解释: [23,2,6,4,7]是大小为 5 的子数组,并且和为 42。
说明:
数组的长度不会超过10,000。
你可以认为所有数字总和在 32 位有符号整数范围内。
思路:首先我们知道如果一个数对k取模为0的话,呢这个数一定是k的倍数,本题要求找的是连续的一块区间和为k的倍数,我们可以从前往后进行遍历,把所有出现的对k取模的值保存下来并且要记录这个值第一次出现的位置,若这个值再次出现,就说明中间这个区间一定是对k取模为0的,因此我们便能判断出结果啦。
class Solution {
public boolean checkSubarraySum(int[] nums, int k) {
if(k==0) {
for(int i=1;i<nums.length;i++)
if(nums[i]==0 && nums[i-1]==0)
return true;
return false;
}
int sum=nums[0];
Map<Integer,Integer> map=new HashMap<>();
map.put(sum%k, 0);
for(int i=1;i<nums.length;i++) {
sum+=nums[i];
if(sum%k==0) return true;
if(map.containsKey(sum%k) && i-map.get(sum%k)>1) return true;
if(!map.containsKey(sum%k))
map.put(sum%k, i);
}
return false;
}
}