给定多个 words,words[i] 的权重为 i 。
设计一个类 WordFilter 实现函数WordFilter.f(String prefix, String suffix)。这个函数将返回具有前缀 prefix 和后缀suffix 的词的最大权重。如果没有这样的词,返回 -1。
例子:
输入:
WordFilter(["apple"])
WordFilter.f("a", "e") // 返回 0
WordFilter.f("b", "") // 返回 -1
注意:
words的长度在[1, 15000]之间。
对于每个测试用例,最多会有words.length次对WordFilter.f的调用。
words[i]的长度在[1, 10]之间。
prefix, suffix的长度在[0, 10]之前。
words[i]和prefix, suffix只包含小写字母。
方法一:暴力匹配每个单词的前后缀(超时)
class WordFilter {
String[] words;
public WordFilter(String[] words) {
this.words=words;
}
public int f(String prefix, String suffix) {
for(int i=words.length-1;i>=0;i--)
if(words[i].startsWith(prefix) && words[i].endsWith(suffix))
return i;
return -1;
}
}
方法二:将前后缀合并为一个单词,加入字典树方便后续查找,其中两个单词合并为一个单词的方法有很多种。例如我们可以交叉合并,假如prefix="app",suffix="see",则合并后可以为“aepeps”,若要查询的前后缀不等长的话可以将少的部分变为none。当然我们也可以通过其他方法进行合并,方法不止一种。
class WordFilter {
class Tree{
int val;
Map<Integer,Tree> children;
public Tree() {
val=0;
children=new HashMap<>();
}
}
Tree root;
public WordFilter(String[] words) {
int weight=0;
root=new Tree();
for(String word : words) {
Tree cur=root;
cur.val=weight;
int len=word.length();
char[] chars=word.toCharArray();
for(int i=0;i<len;i++) {
Tree tmp=cur;
for(int j=i;j<len;j++) {
int code=(chars[j]-'`')*27;
if(tmp.children.get(code)==null)
tmp.children.put(code, new Tree());
tmp=tmp.children.get(code);
tmp.val=weight;
}
tmp=cur;
for(int k=len-1-i;k>=0;k--) {
int code=chars[k]-'`';
if(tmp.children.get(code)==null)
tmp.children.put(code, new Tree());
tmp=tmp.children.get(code);
tmp.val=weight;
}
int code=(chars[i]-'`')*27+(chars[len-1-i]-'`');
if(cur.children.get(code)==null)
cur.children.put(code, new Tree());
cur=cur.children.get(code);
cur.val=weight;
}
weight++;
}
}
public int f(String prefix, String suffix) {
Tree cur=root;
int i=0,j=suffix.length()-1;
while(i<prefix.length() || j>=0) {
char c1=i<prefix.length()?prefix.charAt(i):'`';
char c2=j>=0?suffix.charAt(j):'`';
int code=(c1-'`')*27+(c2-'`');
cur=cur.children.get(code);
if(cur==null) return -1;
i++; j--;
}
return cur.val;
}
}