给定一个非负整数数组 A,如果该数组每对相邻元素之和是一个完全平方数,则称这一数组为正方形数组。
返回 A 的正方形排列的数目。两个排列 A1 和 A2 不同的充要条件是存在某个索引 i,使得 A1[i] != A2[i]。
示例 1:
输入:[1,17,8]
输出:2
解释:
[1,8,17] 和 [17,8,1] 都是有效的排列。
示例 2:
输入:[2,2,2]
输出:1
提示:
1 <= A.length <= 12
0 <= A[i] <= 1e9
思路:我们将能够组成完全平方数的一对数字连边,之后通过深搜进行遍历得到数组中元素的排列,为了满足时间复杂度的要求,我们需要对DFS进行剪枝,我们可以对于前i个元素组成的排列存储起来避免重复枚举。
class Solution {
private int ans;
private Set<String> st;
private boolean[] flag;
private List<List<Integer>> list;
private Map<String,Boolean> used;
public int numSquarefulPerms(int[] A) {
int n=A.length;
if(n<=1) return n;
ans=0;
flag=new boolean[n];
st=new HashSet<>();
used=new HashMap<>();
list=new ArrayList<>();
for(int i=0;i<n;i++)
list.add(new ArrayList<>());
for(int i=0;i<n;i++)
for(int j=i+1;j<n;j++) {
if(!check(A[i],A[j])) continue;
list.get(i).add(j);
list.get(j).add(i);
}
dfs(0,-1,A,n,"");
return ans;
}
private boolean check(int x,int y) {
int z=(int)Math.sqrt(x+y);
return z*z==x+y;
}
private void dfs(int x,int last,int[] a,int n,String s) {
if(x==n) {
if(!used.containsKey(s))
ans++;
used.put(s, true);
return;
}
if(x==0) {
for(int i=0;i<n;i++) {
if(st.contains(s+"#"+String.valueOf(a[i])))
continue;
flag[i]=true;
dfs(x+1,i,a,n,s+"#"+String.valueOf(a[i]));
flag[i]=false;
st.add(s+"#"+String.valueOf(a[i]));
}
}
else {
for(int i=0;i<list.get(last).size();i++) {
int index=list.get(last).get(i);
if(flag[index] || st.contains(s+"#"+String.valueOf(a[index])))
continue;
flag[index]=true;
dfs(x+1,index,a,n,s+"#"+String.valueOf(a[index]));
flag[index]=false;
st.add(s+"#"+String.valueOf(a[index]));
}
}
}
}