给你 n 个长方体 cuboids ,其中第 i 个长方体的长宽高表示为 cuboids[i] = [widthi, lengthi, heighti](下标从 0 开始)。请你从 cuboids 选出一个 子集 ,并将它们堆叠起来。
如果 widthi <= widthj 且 lengthi <= lengthj 且 heighti <= heightj ,你就可以将长方体 i 堆叠在长方体 j 上。你可以通过旋转把长方体的长宽高重新排列,以将它放在另一个长方体上。
返回 堆叠长方体 cuboids 可以得到的 最大高度 。
示例 1:
输入:cuboids = [[50,45,20],[95,37,53],[45,23,12]]
输出:190
解释:
第 1 个长方体放在底部,53x37 的一面朝下,高度为 95 。
第 0 个长方体放在中间,45x20 的一面朝下,高度为 50 。
第 2 个长方体放在上面,23x12 的一面朝下,高度为 45 。
总高度是 95 + 50 + 45 = 190 。
示例 2:
输入:cuboids = [[38,25,45],[76,35,3]]
输出:76
解释:
无法将任何长方体放在另一个上面。
选择第 1 个长方体然后旋转它,使 35x3 的一面朝下,其高度为 76 。
示例 3:
输入:cuboids = [[7,11,17],[7,17,11],[11,7,17],[11,17,7],[17,7,11],[17,11,7]]
输出:102
解释:
重新排列长方体后,可以看到所有长方体的尺寸都相同。
你可以把 11x7 的一面朝下,这样它们的高度就是 17 。
堆叠长方体的最大高度为 6 * 17 = 102 。
提示:
n == cuboids.length
1 <= n <= 100
1 <= widthi, lengthi, heighti <= 100
思路:对于每个长方体,我们首先应对其三条边升序排序以保证高度最大,并且能够证明两个长方体在排序前和排序后满足的重叠条件是一致的,之后我们按照长方体三条边对整个数组进行排序,问题此时已经转化为一个最长上升子序列的问题了。
class Solution {
public int maxHeight(int[][] cuboids) {
int n = cuboids.length;
int[] dp = new int[n];
for (int i = 0; i < n; i++)
Arrays.sort(cuboids[i]);
Arrays.sort(cuboids, (a, b) -> a[0] == b[0] ? a[1] == b[1] ? a[2] - b[2] : a[1] - b[1] : a[0] - b[0]);
for (int i = 0; i < n; i++) {
dp[i] = cuboids[i][2];
for (int j = 0; j < i; j++)
if (cuboids[j][0] <= cuboids[i][0] &&
cuboids[j][1] <= cuboids[i][1] &&
cuboids[j][2] <= cuboids[i][2])
dp[i] = Math.max(dp[i], dp[j] + cuboids[i][2]);
}
int ans = 0;
for (int i = 0; i < n; i++)
ans = Math.max(ans, dp[i]);
return ans;
}
}