给你一个下标从 0 开始且长度为 n
的整数数组 nums
。分割 数组 nums
的方案数定义为符合以下两个条件的 pivot
数目:
1 <= pivot < n
nums[0] + nums[1] + ... + nums[pivot - 1] == nums[pivot] + nums[pivot + 1] + ... + nums[n - 1]
同时给你一个整数 k
。你可以将 nums
中 一个 元素变为 k
或 不改变 数组。
请你返回在 至多 改变一个元素的前提下,最多 有多少种方法 分割 nums
使得上述两个条件都满足。
示例 1:
输入:nums = [2,-1,2], k = 3 输出:1 解释:一个最优的方案是将 nums[0] 改为 k 。数组变为 [3,-1,2] 。 有一种方法分割数组: - pivot = 2 ,我们有分割 [3,-1 | 2]:3 + -1 == 2 。
示例 2:
输入:nums = [0,0,0], k = 1 输出:2 解释:一个最优的方案是不改动数组。 有两种方法分割数组: - pivot = 1 ,我们有分割 [0 | 0,0]:0 == 0 + 0 。 - pivot = 2 ,我们有分割 [0,0 | 0]: 0 + 0 == 0 。
示例 3:
输入:nums = [22,4,-25,-20,-15,15,-16,7,19,-10,0,-13,-14], k = -33 输出:4 解释:一个最优的方案是将 nums[2] 改为 k 。数组变为 [22,4,-33,-20,-15,15,-16,7,19,-10,0,-13,-14] 。 有四种方法分割数组。
提示:
n == nums.length
2 <= n <= 105
-105 <= k, nums[i] <= 105
思路:双map解决。我们知道一个合法的分割需要满足:sum[i]=sum[n]-sum[i].其中sum数组为原数组的前缀和,n为元素的个数。在不改变原数组元素的情况下我们需要找到有多少个分割点满足上述等式。这个是很好处理的。
假设此时改变一个元素,将其变为k时能最大化合法分割点的数量,此时假设我们改变的是第x个元素,我们观察前缀和数组是怎么变化的,对于x左边的元素,其前缀和不变,而x后面的元素其前缀和变为sum[i]+k-nums[x](i>=x)。也就是说在改变一个元素的情况下,我们需要满足的等式为两个:
1. sum[i]=sum[n]-sum[i]+k-nums[x]. i<x
2. sum[i]+k-nums[x]=sum[n]+k-nums[k]-(sum[i]+k-nums[x]) i>=x
化简上述两个式子得:
1. 当 i<x 时,sum[i]*2 = sum[n]+k-nums[x]
2. 当 i>=x 时,sum[i]*2 = sum[n]-(k-nums[x])
因此我们可以预处理出前缀和后,利用两个map完成答案统计。【详情见代码】
class Solution {
public int waysToPartition(int[] nums, int k) {
int n = nums.length;
int[] pre = new int[n];
long[] sum = new long[n];
sum[0] = nums[0];
for (int i = 1; i < n; i++)
sum[i] = sum[i - 1] + nums[i];
long ans1 = 0, ans2 = 0;
for (int i = 0; i < n - 1; i++) {
if (sum[i] * 2 == sum[n - 1])
ans1++;
}
Map<Long, Integer> mp = new HashMap<>();
for (int i = 0; i < n; i++) {
if (i > 0)
mp.put(sum[i - 1] * 2, mp.getOrDefault(sum[i - 1] * 2, 0) + 1);
pre[i] = mp.getOrDefault(sum[n - 1] + k - nums[i], 0);
}
mp.clear();
for (int i = n - 1; i > 0; i--) {
if (i < n)
mp.put(sum[i] * 2, mp.getOrDefault(sum[i] * 2, 0) + 1);
ans2 = Math.max(ans2, pre[i] + mp.getOrDefault(sum[n - 1] - (k - nums[i]), 0));
}
return (int) Math.max(ans1, ans2);
}
}