牛客练习赛13-D-幸运数字Ⅳ(康托展开 & 逆康托展开)

链接:https://www.nowcoder.com/acm/contest/70/D
来源:牛客网


题目描述 
定义一个数字为幸运数字当且仅当它的所有数位都是4或者7。
比如说,47、744、4都是幸运数字而5、17、467都不是。
现在想知道在1...n的第k小的排列(permutation,https://en.wikipedia.org/wiki/Permutation)中,有多少个幸运数字所在的位置的序号也是幸运数字。
输入描述:
第一行两个整数n,k。
1 <= n,k <= 1000,000,000
输出描述:
一个数字表示答案。
如果n没有k个排列,输出-1。
示例1
输入
7 4
输出

1


题解:k<=1000000000,但是13!>k,因此除了最后13位,前边的所有位都是固定的,可以直接数出多少个幸运数字,剩下的最后13位,因为考虑到第k小,我们就可以用到逆康托展开了,复杂度最大也就13*13了。

这里介绍一下康托展开和逆康托展开:

(1)康托展开:设X为一个排列在所有排列中排第几个:

X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!

其中a[i]为当前未出现的元素中是排在第几个(从0开始),这就是传说中的康托展开

https://baike.baidu.com/item/%E5%BA%B7%E6%89%98%E5%B1%95%E5%BC%80/7968428?fr=aladdin(百度百科)

(2)逆康托展开:顾名思义,就是反过来的康托展开,假如让你求第k小的排列情况,令k/(n-1)!,求出a[n],然后k%(n-1)!,一次类推求出n个位置上的值,这一过程我们可以通过正向展开理解,仔细观察式子,会发现a[n]*(n-1)!一定比后边所有项之和要大,所以你每次除上a[i]相应的系数,所得就是这一位上后边有几个比这个数小的数,因此就可以暴力找出这一项应该填数字几,到这里应该就讲的差不多了。。。

#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 5e9
ll n,k,ans,vis[20],a[20];
ll num[20],q[1000005],pre[20]={1};
void dfs(ll x,ll y)
{
	if(x>y) return;
	if(x) ans++;
	dfs(x*10+4,y);
	dfs(x*10+7,y);
}
int jud(ll x)
{
	while(x)
	{
		int tmp=x%10;
		if(tmp!=4 && tmp!=7)
			return 0;
		x/=10;
	}
	return 1;
}
int main(void)
{
	for(int i=1;i<=13;i++) 
		pre[i]=(ll)i*pre[i-1];
	scanf("%lld%lld",&n,&k);
	if(n<13 && k>pre[n])
	{
		printf("-1\n");
		return 0;
	}
	k--;ll m=min(n,13ll);
	for(int i=m;i>0;i--)
	{
		ll t=k/pre[i-1];k%=pre[i-1];
		for(int j=1;j<=m;j++)
		{
			if(!vis[j])
			{
				if(!t)
				{
					vis[j]=1;
					a[i]=n-m+j;
					break;
				}
				t--;
			}
		}
	}
	dfs(0ll,n-m);
	for(int i=1;i<=m;i++)
		if(jud(n-i+1) && jud(a[i]))
			ans++;
	printf("%lld\n",ans);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值