链接:https://www.nowcoder.com/acm/contest/70/D
来源:牛客网
题目描述
定义一个数字为幸运数字当且仅当它的所有数位都是4或者7。
比如说,47、744、4都是幸运数字而5、17、467都不是。
现在想知道在1...n的第k小的排列(permutation,https://en.wikipedia.org/wiki/Permutation)中,有多少个幸运数字所在的位置的序号也是幸运数字。
输入描述:
第一行两个整数n,k。
1 <= n,k <= 1000,000,000
输出描述:
一个数字表示答案。
如果n没有k个排列,输出-1。
示例1
输入
7 4
输出
来源:牛客网
题目描述
定义一个数字为幸运数字当且仅当它的所有数位都是4或者7。
比如说,47、744、4都是幸运数字而5、17、467都不是。
现在想知道在1...n的第k小的排列(permutation,https://en.wikipedia.org/wiki/Permutation)中,有多少个幸运数字所在的位置的序号也是幸运数字。
输入描述:
第一行两个整数n,k。
1 <= n,k <= 1000,000,000
输出描述:
一个数字表示答案。
如果n没有k个排列,输出-1。
示例1
输入
7 4
输出
1
题解:k<=1000000000,但是13!>k,因此除了最后13位,前边的所有位都是固定的,可以直接数出多少个幸运数字,剩下的最后13位,因为考虑到第k小,我们就可以用到逆康托展开了,复杂度最大也就13*13了。
这里介绍一下康托展开和逆康托展开:
(1)康托展开:设X为一个排列在所有排列中排第几个:
X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!
其中a[i]为当前未出现的元素中是排在第几个(从0开始),这就是传说中的康托展开
https://baike.baidu.com/item/%E5%BA%B7%E6%89%98%E5%B1%95%E5%BC%80/7968428?fr=aladdin(百度百科)
(2)逆康托展开:顾名思义,就是反过来的康托展开,假如让你求第k小的排列情况,令k/(n-1)!,求出a[n],然后k%(n-1)!,一次类推求出n个位置上的值,这一过程我们可以通过正向展开理解,仔细观察式子,会发现a[n]*(n-1)!一定比后边所有项之和要大,所以你每次除上a[i]相应的系数,所得就是这一位上后边有几个比这个数小的数,因此就可以暴力找出这一项应该填数字几,到这里应该就讲的差不多了。。。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
#define inf 5e9
ll n,k,ans,vis[20],a[20];
ll num[20],q[1000005],pre[20]={1};
void dfs(ll x,ll y)
{
if(x>y) return;
if(x) ans++;
dfs(x*10+4,y);
dfs(x*10+7,y);
}
int jud(ll x)
{
while(x)
{
int tmp=x%10;
if(tmp!=4 && tmp!=7)
return 0;
x/=10;
}
return 1;
}
int main(void)
{
for(int i=1;i<=13;i++)
pre[i]=(ll)i*pre[i-1];
scanf("%lld%lld",&n,&k);
if(n<13 && k>pre[n])
{
printf("-1\n");
return 0;
}
k--;ll m=min(n,13ll);
for(int i=m;i>0;i--)
{
ll t=k/pre[i-1];k%=pre[i-1];
for(int j=1;j<=m;j++)
{
if(!vis[j])
{
if(!t)
{
vis[j]=1;
a[i]=n-m+j;
break;
}
t--;
}
}
}
dfs(0ll,n-m);
for(int i=1;i<=m;i++)
if(jud(n-i+1) && jud(a[i]))
ans++;
printf("%lld\n",ans);
return 0;
}