数据挖掘
文章平均质量分 83
Havenoidea
这个作者很懒,什么都没留下…
展开
-
欠拟合与过拟合概念
1、 局部加权回归:线性回归的变化版本2、 概率解释:另一种可能的对于线性回归的解释3、 Logistic回归:基于2的一个分类算法4、 感知器算法:对于3的延伸,简要讲 复习: –第i个训练样本令,以参数向量为条件,对于输入x,输出为:n为特征数量 定义成本函数J,定义为:转载 2013-10-18 11:03:07 · 3104 阅读 · 0 评论 -
牛顿方法
1、 牛顿方法:对Logistic模型进行拟合2、 指数分布族3、 广义线性模型(GLM):联系Logistic回归和最小二乘模型 复习:Logistic回归:分类算法假设给定x以为参数的y=1和y=0的概率:求对数似然性:对其求偏导数,应用梯度上升方法,求得:转载 2013-10-18 11:02:08 · 1573 阅读 · 0 评论 -
K近邻算法
by July什么是K近邻算法 何谓K近邻算法,即K-Nearest Neighbor algorithm,简称KNN算法,单从名字来猜想,可以简单粗暴的认为是:K个最近的邻居,当K=1时,算法便成了最近邻算法,即寻找最近的那个邻居。为何要找邻居?打个比方来说,假设你来到一个陌生的村庄,现在你要找到与你有着相似特征的人群融入他们,所谓入伙。 用官方的话来说,所谓转载 2013-10-14 16:09:33 · 5290 阅读 · 1 评论 -
数据挖掘中所需的概率论与数理统计知识
(关键词:微积分、概率分布、期望、方差、协方差、数理统计简史、大数定律、中心极限定理、正态分布)导言:本文从微积分相关概念,梳理到概率论与数理统计中的相关知识,但本文之压轴戏在本文第4节(彻底颠覆以前读书时大学课本灌输给你的观念,一探正态分布之神秘芳踪,知晓其前后发明历史由来),相信,每一个学过概率论与数理统计的朋友都有必要了解数理统计学简史,因为,只有了解各个定理.公式的发明转载 2013-10-12 15:26:35 · 3836 阅读 · 0 评论 -
机器学习降维算法
(我转正终面被问到的一个问题,估计也是我面试答得最烂的一个问题,在此查资料转载学习一下。)引言:机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f转载 2013-10-11 17:26:43 · 8416 阅读 · 0 评论 -
近邻的距离度量表示法
K近邻算法的核心在于找到实例点的邻居,这个时候,问题就接踵而至了,如何找到邻居,邻居的判定标准是什么,用什么来度量。这一系列问题便是下面要讲的距离度量表示法。但有的读者可能就有疑问了,我是要找邻居,找相似性,怎么又跟距离扯上关系了? 这是因为特征空间中两个实例点的距离和反应出两个实例点之间的相似性程度。K近邻模型的特征空间一般是n维实数向量空间,使用的距离可以使欧式距离,也是可以是其转载 2013-10-11 16:59:34 · 4575 阅读 · 0 评论 -
平凡而又神奇的贝叶斯方法
BY 刘未鹏 – SEPTEMBER 21, 2008POSTED IN: 数学, 机器学习与人工智能, 计算机科学概率论只不过是把常识用数学公式表达了出来。——拉普拉斯记得读本科的时候,最喜欢到城里的计算机书店里面去闲逛,一逛就是好几个小时;有一次,在书店看到一本书,名叫贝叶斯方法。当时数学系的课程还没有学到概率统计。我心想,一个方法能够专门写出一本书转载 2013-10-10 18:29:17 · 1499 阅读 · 0 评论 -
数据挖掘领域十大经典算法初探
译者:July 二零一一年一月十五日-----------------------------------------参考文献:国际权威的学术组织ICDM,于06年12月年评选出的数据挖掘领域的十大经典算法:C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CAR转载 2013-10-10 14:27:50 · 1241 阅读 · 0 评论 -
监督学习应用与梯度下降
1、 线性回归2、 梯度下降3、 正规方程组 (复习)监督学习:告诉算法每个样本的正确答案,学习后的算法对新的输入也能输入正确的答案 1、 线性回归例:Alvin汽车,先让人开车,Alvin摄像头观看(训练),而后实现自动驾驶。本质是一个回归问题,汽车尝试预测行驶方向。 例:上一节课的房屋大小与价格数据转载 2013-10-18 11:04:14 · 1545 阅读 · 0 评论