[Usaco2007 Dec]队列变换
Description
FJ打算带他的N(1 <= N <= 30,000)头奶牛去参加一年一度的“全美农场主大奖赛”。在这场比赛中,每个参赛者都必须让他的奶牛排成一列,然后领她们从裁判席前依次走过。 今年,竞赛委员会在接受队伍报名时,采用了一种新的登记规则:他们把所有队伍中奶牛名字的首字母取出,按它们对应奶牛在队伍中的次序排成一列(比如说,如果FJ带去的奶牛依次为Bessie、Sylvia、Dora,登记人员就把这支队伍登记为BSD)。登记结束后,组委会将所有队伍的登记名称按字典序升序排列,就得到了他们的出场顺序。 FJ最近有一大堆事情,因此他不打算在这个比赛上浪费过多的时间,也就是说,他想尽可能早地出场。于是,他打算把奶牛们预先设计好的队型重新调整一下。 FJ的调整方法是这样的:每次,他在原来队列的首端或是尾端牵出一头奶牛,把她安排到新队列的尾部,然后对剩余的奶牛队列重复以上的操作,直到所有奶牛都被插到了新的队列里。这样得到的队列,就是FJ拉去登记的最终的奶牛队列。 接下来的事情就交给你了:对于给定的奶牛们的初始位置,计算出按照FJ的调整规则所可能得到的字典序最小的队列。
Input
* 第1行: 一个整数:N
* 第2..N+1行: 第i+1行仅有1个’A’..’Z’中的字母,表示队列中从前往后数第i 头奶牛名字的首字母
Output
* 第1..??行: 输出FJ所能得到的字典序最小的队列。每行(除了最后一行)输 出恰好80个’A’..’Z’中的字母,表示新队列中每头奶牛姓名的首 字母
Sample Input
6
A
C
D
B
C
B
输入说明:
FJ有6头顺次排好队的奶牛:ACDBCB
Sample Output
ABCBCD
输出说明:
操作数 原队列 新队列
#1 ACDBCB
#2 CDBCB A
#3 CDBC AB
#4 CDB ABC
#5 CD ABCB
#6 D ABCBC
#7 ABCBCD
Solution
一开始以为是先选第n位再选第1位,卡在这里不会做。
简单贪心。
考虑现在的一个字符串,假如最左和最右字符不一样,我当然选更小的那个,如果不一样,就一直往里找到第一个不一样的地方,选小的那个。
关键在于如何快速判断这一点。
对于左端点,我们提取出它往后的后缀,对于右端点我们提取出它往前的前缀,比较字典序即可。
因此我们把正串+0+反串接起来建后缀数组,直接查rank即可
(没错我就只会用SAM建SA)
Code
#include <bits/stdc++.h>
using namespace std;
#define right Right
const int MaxN=120100;
char s[MaxN];
int right[MaxN],len[MaxN],pos[MaxN],nxt[MaxN][26],fa[MaxN];
int up[MaxN],w[MaxN],ver[MaxN];
int sa[MaxN],rk[MaxN];
int n,sa_n=0;
struct Node{int v;Node *nxt;}pool[MaxN],*tail=pool,*g[MaxN];
inline void addedge(int u,int v){tail->v=v;tail->nxt=g[u];g[u]=tail++;}
struct sam{
int root,last,cnt;
sam(){root=last=++cnt;}
void insert(int c,int r){
int np=++cnt,p=last;last=np;
right[np]=len[np]=len[p]+1;pos[np]=r;
for(;p&&!nxt[p][c];nxt[p][c]=np,p=fa[p]);
if (!p) fa[np]=root;
else if (len[nxt[p][c]]==len[p]+1) fa[np]=nxt[p][c];
else{
int nq=++cnt,q=nxt[p][c];len[nq]=len[p]+1;right[nq]=right[q];
memcpy(nxt[nq],nxt[q],sizeof nxt[q]);fa[nq]=fa[q];
fa[np]=fa[q]=nq;
for(;p&&nxt[p][c]==q;nxt[p][c]=nq,p=fa[p]);
}
}
void build(){for(int i=n;i;i--)insert(s[i]-'A',i);}
void sort(){
for(int i=1;i<=cnt;i++){
up[i]=s[n+1-right[i]+len[fa[i]]];
w[up[i]]++;
}
for(int i=1;i<='Z';i++) w[i]+=w[i-1];
for(int i=1;i<=cnt;i++) ver[w[up[i]]--]=i;
}
void build_ST(){for(int i=cnt;i>=2;i--)addedge(fa[ver[i]],ver[i]);}
}SAM;
void dfs(int x){
if(pos[x]) sa[++sa_n]=pos[x];
for(Node *p=g[x];p;p=p->nxt)dfs(p->v);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){char ch;scanf(" %c",&ch);s[i]=ch;}
s[n+1]='0';
for(int i=n+2;i<=n+n+1;i++) s[i]=s[2*(n+1)-i];
n=n+n+1;
SAM.build();SAM.sort();SAM.build_ST();dfs(1);
for(int i=1;i<=n;i++)rk[sa[i]]=i;
for(int l=1,r=(n-1)>>1,j=1; l<=r; j++){
if (rk[l]<=rk[n+1-r]) putchar(s[l++]);
else putchar(s[r--]);
if (j%80==0) puts("");
}
return 0;
}