深度学习问答

深度学习问答@TOC

1.什么是卷积?

解析:

对图像(不同的数据窗口数据)和滤波矩阵(一组固定的权重:因为每个神经元的多个权重固定,所以又可以看做一个恒定的滤波器filter)做内积(逐个元素相乘再求和)的操作就是所谓的『卷积』操作,也是卷积神经网络的名字来源。

非严格意义上来讲,下图中红框框起来的部分便可以理解为一个滤波器,即带着一组固定权重的神经元。多个滤波器叠加便成了卷积层。

2.什么是CNN的池化pool层?

解析:

池化,简言之,即取区域平均或最大,如下图所示(图引自cs231n)

  1. 什么样的数据集不适合用深度学习?

数据集太小,数据样本不足时,深度学习相对其它机器学习算法,没有明显优势。

数据集没有局部相关特性,目前深度学习表现比较好的领域主要是图像/语音/自然语言处理等领域,这些领域的一个共性是局部相关性。图像中像素组成物体,语音信号中音位组合成单词,文本数据中单词组合成句子,这些特征元素的组合一旦被打乱,表示的含义同时也被改变。对于没有这样的局部相关性的数据集,不适于使用深度学习算法进行处理。

4.什么原因造成梯度消失问题?

神经网络的训练中,通过改变神经元的权重,使网络的输出值尽可能逼近标签以降低误差值,训练普遍使用BP算法,核心思想是,计算出输出与标签间的损失函数值,然后计算其相对于每个神经元的梯度,进行权值的迭代。

梯度消失会造成权值更新缓慢,模型训练难度增加。造成梯度消失的一个原因是,许多激活函数将输出值挤压在很小的区间内,在激活函数两端较大范围的定义域内梯度为0。造成学习停止。

  1. overfitting怎么解决:

答案:dropout, regularization, batch normalizatin;

6.常见的几种最优化方法

梯度下降法:是最早最简单,也是最为常用的最优化方法。梯度下降法实现简单,当目标函数是凸函数时,梯度下降法的解是全局解。一般情况下,其解不保证是全局最优解,梯度下降法的速度也未必是最快的。梯度下降法的优化思想是用当前位置负梯度方向作为搜索方向,因为该方向为当前位置的最快下降方向,所以也被称为是”最速下降法“。最速下降法越接近目标值,步长越小,前进越慢。

牛顿法:是一种在实数域和复数域上近似求解方程的方法。方法使用函数f (x)的泰勒级数的前面几项来寻找方程f (x) = 0的根。牛顿法最大的特点就在于它的收敛速度很快。

共轭梯度法:是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。
在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。

启发式方法:指人在解决问题时所采取的一种根据经验规则进行发现的方法。其特点是在解决问题时,利用过去的经验,选择已经行之有效的方法,而不是系统地、以确定的步骤去寻求答案。启发式优化方法种类繁多,包括经典的模拟退火方法、遗传算法、蚁群算法以及粒子群算法等等。

7.迁移学习

8.请简单解释下目标检测中的这个IOU评价函数(intersection-over-union)

解析:

在目标检测的评价体系中,有一个参数叫做 IoU ,简单来讲就是模型产生的目标窗口和原来标记窗口的交叠率。

具体我们可以简单的理解为:即检测结果DetectionResult与真实值Ground Truth的交集比上它们的并集,即为检测的准确率 IoU .

9.解释维数灾难的概念

当特征向量数理很少时,增加特征,可以提高算法的精度,但当特征向量的维数增加到一定数量之后,再增加特征,算法的精度反而会下降

  1. Logistic回归为什么用交叉熵而不用欧氏距离做损失函数?

如果用欧氏距离,不是凸函数,而用交叉熵则是凸函数.

11.softmax回归训练时的目标函数时凸函数吗?

是,但有不止一个全局最优解

  1. logistic回归是生成模型还是判别模型?

判别模型.

监督学习方法可分为两大类,即生成方法与判别方法,它们所学到的模型称为生成模型与判别模型。

判别模型:判别模型是学得一个分类面(即学得一个模型),该分类面可用来区分不同的数据分别属于哪一类;

生成模型:生成模型是学得各个类别各自的特征(即可看成学得多个模型),可用这些特征数据和要进行分类的数据进行比较,看新数据和学得的模型中哪个最相近,进而确定新数据属于哪一类。

13.在神经网络体系结构中,哪些会有权重共享??

(1)卷积神经网络

(2)递归神经网络

(3)全连接网络

答案
(1)&(2)

14.一个典型人脸识别系统的识别流程?

人脸检测–》人脸对齐–》人脸特征提取–》人脸特征比对。

15.深度机器学习中的mini-batch的大小对学习效果有何影响?

mini-batch太小会导致收敛变慢,太大容易陷入sharp
minima,泛化性不好。

  1. 神经网络中,深度与宽度的关系,及其表示能力的差异?

隐藏层的数量称为模型的深度,隐藏层的维数(单元数)称为该层的宽度。

万能近似定理表明一个单层的网络就足以表达任意函数,但是该层的维数可能非常大,且几乎没有泛化能力;此时,使用更深的模型能够减少所需的单元数,同时增强泛化能力(减少泛化误差)。参数数量相同的情况下,浅层网络比深层网络更容易过拟合。

为什么交叉熵损失相比均方误差损失能提高以 sigmoid 和 softmax 作为激活函数的层的性能?

解析:简单来说,就是使用均方误差(MSE)作为损失函数时,会导致大部分情况下梯度偏小,其结果就是权重的更新很慢,且容易造成“梯度消失”现象。而交叉熵损失克服了这个缺点,当误差大的时候,权重更新就快,当误差小的时候,权重的更新才慢。

  1. 为什么会出现梯度消失和梯度爆炸?

一是在深层网络中,二是采用了不合适的损失函数,比如sigmoid。梯度爆炸一般出现在深层网络和权值初始化值太大的情况下,下面分别从这两个角度分析梯度消失和爆炸的原因。

如果激活函数选择不合适,比如使用sigmoid,梯度消失就会很明显了,原因看下图,左图是sigmoid的损失函数图,右边是其导数的图像,如果使用sigmoid作为损失函数,其梯度是不可能超过0.25的。

在做正则化过程中,为什么只对权重做正则惩罚,而不对偏置做权重惩罚?

解析:在神经网络中,参数包括每一层仿射变换的权重和偏置,我们通常只对权重做惩罚而不对偏置做正则惩罚。

精确拟合偏置所需的数据通常比拟合权重少得多。每个权重会指定两个变量如何相互作用。我们需要在各种条件下观察这两个变量才能良好地拟合权重。而每个偏置仅控制一个单变量。这意味着,我们不对其进行正则化也不会导致太大的方差。另外,正则化偏置参数可能会导致明显的欠拟合。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值