机器学习
西瓜游侠
希望自己能够开心
展开
-
基于距离的计算方法
1. 欧氏距离(Euclidean Distance)欧氏距离是最易于理解的一种距离计算方法,源自欧氏空间中两点间的距离公式。(1)二维平面上两点a(x1,y1)与b(x2,y2)间的欧氏距离:(2)三维空间两点a(x1,y1,z1)与b(x2,y2,z2)间的欧氏距离:(3)两个n维向量a(x11,x12,…,x1n)与 b(x21,x22,…,x2n)间的欧氏距离:转载 2015-07-31 14:49:24 · 773 阅读 · 0 评论 -
优化算法——梯度下降法
梯度下降转载 2016-06-07 16:29:22 · 1579 阅读 · 0 评论 -
优化算法——牛顿法(Newton Method)
牛顿法转载 2016-06-07 16:33:42 · 3358 阅读 · 0 评论 -
最小二乘法的线性拟合
最小二乘法转载 2016-06-07 16:59:50 · 13027 阅读 · 0 评论 -
高斯牛顿迭代法
高斯牛顿迭代法转载 2016-06-07 17:09:43 · 27382 阅读 · 3 评论 -
机器学习常见算法分类汇总
机器学习算法分类转载 2016-06-06 14:46:03 · 449 阅读 · 0 评论 -
机器学习入门:线性回归及梯度下降
出处:http://blog.csdn.net/xiazdong/article/details/7950084本文会讲到:(1)线性回归的定义(2)单变量线性回归(3)cost function:评价线性回归是否拟合训练集的方法(4)梯度下降:解决线性回归的方法之一(5)feature scaling:加快梯度下降执行速度的方法(6转载 2016-06-06 17:32:35 · 508 阅读 · 0 评论 -
【转】卷积神经网络全面解析
转载地址:http://www.moonshile.com/post/juan-ji-shen-jing-wang-luo-quan-mian-jie-xi#toc_7转载 2016-07-15 10:03:52 · 689 阅读 · 0 评论