Qemu之CPU mode介绍

1. custom模式

KVM关于CPU型号的定义, libvirt对CPU的定义提炼出标准的几种类型在 /usr/share/libvirt/cpu_map/index.xml目录下可以查到, 包含了features和vendors的定义.

主要是以下几种CPU型号:

'486' 
'pentium' 'pentium2' 'pentium3' 'pentiumpro' 'coreduo' 'pentiumpro' 'n270' 'coreduo' 'core2duo' 
'qemu32' 'kvm32' 'cpu64-rhel5' 'cpu64-rhel6' 'kvm64' 'qemu64' 
'Conroe' 'Penryn' 'Nehalem''Westmere' 'SandyBridge' 'Haswell' 
'athlon' 'phenom' 'Opteron_G1' 'Opteron_G2' 'Opteron_G3' 'Opteron_G4' 'Opteron_G5' 'EPYC' 'EPYC-IBPB'
'POWER6' 'POWER7' 'POWER8' 'POWER9'
'POWERPC_e5500' 'POWERPC_e6500'

使用这种方案主要是为了在虚拟机迁移的时候, 在不同的宿主机间保证兼容性。

custom定义方法:

<cpu mode='custom' match='exact'>
    <model fallback='allow'>kvm64</model>
 ...
    <feature policy='require' name='monitor'/>
  </cpu>

2. host-model模式

物理CPU的特性,选择一个最靠近的标准CPU型号,xml配置文件为:

<cpu mode='host-model' />

使用host-model看到的VCPU:

processor       : 3
vendor_id       : GenuineIntel
cpu family      : 6
model           : 44
model name      : Westmere E56xx/L56xx/X56xx (Nehalem-C)
...

3. host-passthrough 模式

直接将物理CPU 暴露给虚拟机使用,在虚拟机上完全可以看到的就是物理CPU的型号;xml配置文件为:

<cpu mode='host-passthrough'/>

使用host-passthrough看到的VCPU:

processor       : 3
vendor_id       : GenuineIntel
cpu family      : 6
model           : 44
model name      : Intel(R) Xeon(R) CPU           X5650  @ 2.67GHz

应用场景:

HOST技术适用于以下场景:

  1. CPU压力非常大
  2. 需要将物理CPU的一些特性传给虚拟机使用
  3. 需要在虚拟机里面看到和物理CPU一模一样的CPU品牌型号,这个在一些公有云很有意义
    注意:HOST方式虚拟机不能迁移到不同型号的CPU上

参考:
KVM虚拟化CPU技术总结
CPU host-passthrough技术与应用
Domain XML format

### 大模型对齐微调DPO方法详解 #### DPO简介 直接偏好优化(Direct Preference Optimization, DPO)是一种用于改进大型语言模型行为的技术,该技术通过结合奖励模型训练和强化学习来提升训练效率与稳定性[^1]。 #### 实现机制 DPO的核心在于它能够依据人类反馈调整模型输出的概率分布。具体来说,当给定一对候选响应时,DPO试图使更受偏好的那个选项具有更高的生成概率。这种方法不仅简化了传统强化学习所需的复杂环境设置,而且显著增强了模型对于多样化指令的理解能力和执行精度[^2]。 #### PAI平台上的实践指南 为了便于开发者实施这一先进理念,在PAI-QuickStart框架下提供了详尽的操作手册。这份文档覆盖了从环境配置直至完成整个微调流程所需的一切细节,包括但不限于数据准备、参数设定以及性能评估等方面的内容。尤其值得注意的是,针对阿里云最新发布的开源LLM——Qwen2系列,文中给出了具体的实例说明,使得即使是初次接触此类工作的用户也能顺利上手。 ```python from transformers import AutoModelForCausalLM, Trainer, TrainingArguments model_name_or_path = "qwen-model-name" tokenizer_name = model_name_or_path training_args = TrainingArguments( output_dir="./results", per_device_train_batch_size=8, num_train_epochs=3, ) trainer = Trainer( model_init=lambda: AutoModelForCausalLM.from_pretrained(model_name_or_path), args=training_args, train_dataset=train_dataset, ) # 假设已经定义好了train_dataset trainer.train() ``` 这段代码片段展示了如何使用Hugging Face库加载预训练模型并对其进行微调的过程。虽然这里展示的例子并不完全对应于DPO的具体实现方式,但它提供了一个基础模板供进一步定制化开发之用[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值