自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2199)
  • 资源 (4667)
  • 收藏
  • 关注

原创 混元翻译模型1.5评测:33种语言覆盖分析

HY-MT1.5 系列翻译模型凭借其广泛的多语言支持、先进的功能特性和出色的性价比表现,正在成为开源翻译生态中的重要力量。从语言覆盖看:33种语言 + 5类民族语言的支持,填补了主流模型在少数民族语言和非洲语种上的空白;从功能角度看:术语干预、上下文翻译、格式保留三大特性直击工业级应用痛点;从部署角度看:1.8B模型兼顾性能与效率,是目前少有的能在边缘设备运行的高质量翻译方案;从生态角度看:完全开源且允许商用,为企业构建自主可控的翻译系统提供了坚实基础。

2026-01-10 16:59:11 582

原创 电商评论信息抽取:AI智能实体侦测服务应用场景实战

RaNER(Robust Adversarial Named Entity Recognition)是由达摩院提出的一种面向中文命名实体识别任务的预训练模型架构。它在 BERT 基础上引入对抗训练机制和鲁棒性优化策略,显著提升了模型在噪声文本、短文本和领域迁移场景下的泛化能力。该模型在大规模中文新闻语料上进行预训练,涵盖广泛的语言表达模式,尤其擅长处理口语化、缩写、错别字等真实场景中的文本变体,非常适合用于电商平台中用户评论这类非正式语言环境。:人物姓名,如“张伟”、“李娜”

2026-01-10 15:25:19 408

原创 RaNER模型参数详解:中文NER服务性能调优指南

本文围绕基于RaNER模型构建的中文命名实体识别服务,系统性地阐述了其技术原理与性能调优方法。RaNER模型优势:通过字符-词双通道建模与边界感知CRF,实现了中文NER任务的高精度与强鲁棒性;推理加速策略:推荐使用ONNX Runtime进行CPU优化,或TensorRT实现GPU量化部署,显著降低延迟;关键参数调优:合理设置batch_size和,可在资源受限环境下最大化吞吐;系统级优化:从前端防抖、后端异步处理到LRU缓存,构建稳定高效的双模交互系统;可视化增强。

2026-01-10 15:13:18 667

原创 命名实体识别入门必看:RaNER模型WebUI部署与使用详解

本项目基于ModelScope平台提供的 RaNER 预训练模型,封装为可一键部署的镜像服务,并集成了具有赛博朋克风格的 WebUI 界面,极大降低了技术门槛。用户无需编写代码,即可通过可视化界面完成实体识别任务;同时,系统还提供标准 REST API 接口,便于开发者集成到自有系统中。该服务具备以下核心能力:- 支持人名(PER)、地名(LOC)、机构名(ORG)三类常见中文实体的高精度识别- 实现实时语义分析 + 动态彩色高亮显示- 兼容 CPU 推理环境,响应迅速,适合轻量级部署。

2026-01-10 12:07:59 161

原创 Qwen3-VL-WEBUI对比评测:与其他VL模型在OCR任务表现

OCR综合性能领先:在字符准确率、结构化解析、多语言支持等方面,Qwen3-VL-WEBUI 显著优于 LLaVA、PaliGemma 和 InternVL,尤其适合高精度文档处理场景。架构创新支撑能力升级:交错MRoPE、DeepStack、文本-时间戳对齐等技术共同构建了强大的图文理解基础,使模型不仅能“看到”文字,更能“理解”其语义与结构。部署体验极致简化:通过Web UI封装,实现“一键部署+网页操作”,大幅降低使用门槛,真正实现AI普惠。适用场景广泛。

2026-01-10 10:26:06 552

原创 Qwen3-VL-WEBUI备份策略:模型数据安全部署教程

本文系统性地介绍了Qwen3-VL-WEBUI 的数据安全部署与备份策略,从核心架构分析出发,明确了模型权重、用户数据、配置文件三大关键资产,并设计了一套融合本地快照、对象存储上传与自动化验证的完整备份方案。通过 Python 脚本实现了可复用、可扩展的自动化备份流程,并提供了详细的恢复步骤与常见问题应对指南。最终结合工程实践提出了挂载卷管理、权限控制、监控告警等多项最佳实践,确保多模态AI系统的长期稳定运行。

2026-01-10 09:11:29 124

原创 Qwen3-VL-WEBUI物流包裹识别:分拣系统集成实战教程

通过本次实战,我们成功构建了一个基于高精度信息抽取:利用Qwen3-VL的强大图文理解能力,准确提取非结构化面单中的关键字段;全流程自动化:从图像采集到分拣指令生成,形成完整闭环;强泛化适应性:支持多语言、模糊图像、复杂布局,降低对打印质量依赖;低成本快速部署:基于Docker镜像,可在1小时内完成上线。相比传统OCR+正则匹配方案,本系统错误率下降约40%,尤其在处理手写备注、异形标签时表现突出。

2026-01-10 08:43:01 589

原创 Qwen2.5-7B推理OOM?KV Cache优化部署解决方案

Qwen2.5-7B 虽然参数量适中,但在长文本推理中仍面临KV Cache 导致的 OOM 风险。根本解法不是盲目升级硬件,而是通过现代推理框架优化缓存机制。:实现非连续内存管理,提升显存利用率GQA 架构利用:将 KV 头数从 28 降至 4,直接削减 85% 缓存体积滑动窗口注意力:限制最大 context 长度,防止缓存无限膨胀结合一键式镜像部署方案,在单张 RTX 4090上即可流畅运行长达 32K 上下文的网页推理服务。

2026-01-10 04:02:25 198

原创 深度剖析S32DS汽车MCU调试流程与技巧

深入讲解S32DS环境下汽车MCU的调试全过程,涵盖常见问题与高效技巧。结合s32ds工具链特性,提升开发效率与故障定位能力,是掌握s32ds调试核心方法的实用指南。

2026-01-09 16:59:01 414

原创 手把手教程:GitHub开源Image-to-Video项目本地部署指南

本文完整演示了如何在本地部署并使用 GitHub 开源项目,涵盖:✅ 环境搭建全过程✅ WebUI 使用五步法✅ 参数调优实战经验✅ 常见问题排错指南✅ 批量处理与自动化思路🎯- 掌握基于 I2VGen-XL 的图像转视频技术落地能力- 获得可复用的本地部署模板- 提升对 AIGC 工具链的理解与掌控力。

2026-01-09 16:46:34 368

原创 可私有化部署的大模型:保护数据安全的5种方案

私有化部署并非简单地把模型“搬回家”,而是一次系统性的工程重构。从安全是前提,但不能牺牲可用性;性能是保障,需匹配真实业务节奏;成本是杠杆,决定规模化可能性。未来,随着模型小型化、推理加速、隐私计算等技术的进步,我们将迎来“既安全又高效”的AI普惠时代。而现在,正是构建这一基础设施的关键时刻。行动建议:从一个最小闭环开始——选择一种最适合你当前资源的方案,先让第一个私有化模型跑起来。

2026-01-09 15:57:35 369

原创 如何用Sambert-HifiGan实现语音广告自动生成

掌握了 Sambert-HifiGan 在中文多情感TTS中的独特优势学会了如何修复常见依赖冲突,打造稳定运行环境实现了 WebUI + API 双模式服务架构,满足多样化需求获得了可直接投入生产的语音广告生成系统。

2026-01-09 14:43:15 804

原创 Sambert-HifiGan语音合成服务的多CDN加速方案

本文围绕Sambert-HifiGan 中文多情感语音合成服务,提出并实现了基于多CDN加速的高性能部署方案。我们不再将语音合成视为单纯的“模型推理任务”,而是将其定位为一个端到端的内容交付系统,涵盖从文本输入、语音生成到音频传输的全链路优化。🎯 核心价值总结1.速度提升:通过多CDN分发,全球用户平均延迟降低45%以上2.稳定性增强:多CDN互为备份,避免单点故障导致服务中断3.体验升级:WebUI实现“输入即播放”,真正达到生产级可用标准4.工程可复制。

2026-01-09 14:34:52 536

原创 CRNN模型深度解析:为何它在中文识别中表现优异

CRNN并非简单的CNN与RNN堆叠,而是针对图像序列识别任务精心设计的端到端结构。POST /ocrForm Data:Response:"text": "这是一段通过CRNN识别的文字"便于集成到企业内部系统、移动端App或自动化脚本中。文字识别不是图像分类,而是序列预测问题。它通过三大核心技术组件——CNN特征提取、RNN序列建模、CTC端到端训练——构建了一个既能看懂“形”,又能理解“意”的智能系统。尤其在中文环境下,面对庞大的字符集和复杂的语义结构,CRNN展现出强大的泛化能力和容错性。

2026-01-09 12:20:10 456

原创 LCD显示屏RGB接口布局布线实战案例

深入讲解LCD显示屏在PCB设计中的RGB接口布局与布线技巧,针对信号完整性和电磁兼容问题提出有效解决方案,提升显示稳定性与系统可靠性。

2026-01-09 12:06:39 175

原创 多模型对比:CRNN在OCR任务中的优势

预处理# 模型推理pred_text = ctc_greedy_decode(logits) # 自定义解码函数CRNN在“精度、效率、鲁棒性、可部署性”四者之间实现了最佳平衡,尤其适合中文为主的轻量级OCR服务。中文识别更强BiLSTM+CTC结构天然适配中文连续书写特性,优于逐字分类模型。复杂场景更稳序列建模能力使其能在字符粘连、背景杂乱情况下依靠上下文纠错。CPU友好易部署参数量小、计算图简洁,无需GPU即可实现亚秒级响应,适合私有化部署。

2026-01-09 11:55:37 630

原创 低光照图像:CRNN的特殊预处理

在基于CRNN的OCR系统中,模型固然重要,但高质量的输入才是发挥其潜力的前提。特别是在低光照、模糊、低对比度等现实挑战下,一个精心设计的预处理流水线,其价值不亚于模型本身的升级。✅预处理是OCR系统的第一道防线它决定了模型“看到”的是什么。再强大的AI也无法从噪声中还原语义。✅自动化是落地关键手动调参不可持续,必须结合图像质量检测,实现“感知-决策-增强”闭环。✅速度与精度的权衡可控通过条件触发机制,在CPU环境下也能实现<1秒的端到端响应。

2026-01-09 11:53:18 519

原创 Nodepad++编辑器联动AI:保存文本即触发TTS语音合成任务

本文完整展示了如何将Nodepad++ 编辑器与ModelScope Sambert-Hifigan 多情感TTS模型深度联动,构建一套“保存即触发语音合成”的智能写作辅助系统。自动化闭环:打破“写-复制-粘贴-合成”链路,实现零干预语音生成高质量输出:依托先进模型,提供富有情感的真实人声体验工程可落地:依赖清晰、接口标准、代码完整,具备直接上线能力。

2026-01-09 11:30:38 203

原创 轻量级OCR实战:CRNN的部署与测试

CRNN(Convolutional Recurrent Neural Network)是一种专为序列识别任务设计的端到端神经网络架构,特别适用于不定长文本识别。它结合了CNN 提取空间特征RNN 建模时序依赖和CTC 损失函数实现对齐三大核心技术,是传统 OCR 中最具代表性的深度学习方案之一。本文详细介绍了基于CRNN 模型的轻量级 OCR 系统的部署与测试全过程,涵盖模型原理、系统架构、WebUI 与 API 使用、图像预处理优化及性能实测。📌 核心价值总结高精度。

2026-01-09 11:22:49 216

原创 Transformer位置编码详解:对长文本合成的影响

Transformer的核心是自注意力机制,它通过计算Query、Key、Value之间的相关性实现全局上下文建模。然而,这一机制本身是排列不变的(Permutation-Invariant)——即打乱输入顺序不会改变输出结果,除非我们显式地注入位置信息。📌 类比说明就像一群人围坐开会,每个人都能看到所有人并自由交流(自注意力),但如果没人知道谁坐在哪儿(无位置信息),就无法判断“左边那位”是谁。位置编码就是给每个参会者贴上座位号。| 方案 | 长文本支持 | 改造成本 | 推荐指数 |

2026-01-09 11:06:03 193

原创 理解HardFault_Handler执行上下文环境

通过剖析HardFault_Handler的执行上下文,揭示异常发生时的寄存器状态与堆栈信息,帮助开发者快速实现hardfault_handler问题定位,提升嵌入式系统调试效率。

2026-01-09 10:25:32 546

原创 公共安全领域:车牌与警示牌OCR识别应急响应

本文围绕公共安全应急响应中的关键信息提取需求,介绍了一套基于CRNN模型的轻量级OCR识别系统。它不仅实现了高精度中英文识别,更通过智能预处理+双模接口+CPU优化,真正做到了“开箱即用、边缘可用、实战好用”。📌 核心价值总结精准:CRNN模型显著提升复杂环境下识别率高效:平均响应<1秒,适合一线快速处置可靠:支持离线运行,无网络亦可工作易集成:提供WebUI与API,便于嵌入现有系统。

2026-01-09 10:08:37 412

原创 系统学习WinDbg下载后的基本调试流程与术语

掌握WinDbg下载后的基础操作是Windows调试的关键一步。从启动调试会话到理解符号、堆栈和内存,熟悉常用命令与核心术语能大幅提升问题定位效率,尤其在分析蓝屏或程序崩溃时尤为实用。

2026-01-09 09:30:31 177

原创 CSANMT模型量化压缩技术实战

app.pyreturn jsonify({"error": "文本不能为空"}), 400try:🚀 API 特性- 支持 POST接收JSON请求- 返回结构化响应,便于前端解析- 错误码清晰,利于调试集成通过本次CSANMT模型量化压缩实战模型瘦身:从 580MB → 148MB,降幅达74.5%速度飞跃:单句推理从 1.18s → 0.39s,提速超3倍服务稳定:锁定关键依赖版本,杜绝环境冲突功能完整:同时支持 WebUI 与 API 两种调用方式📘 最佳实践总结1.

2026-01-09 08:05:26 573

原创 智能翻译API性能测试:吞吐量与延迟优化

1. 性能始于架构设计在资源受限环境下,选择轻量模型(如CSANMT)比盲目追求大模型更务实。2. 吞吐量可通过软件工程手段提升即使不升级硬件,通过多进程和批处理也能实现近倍增的吞吐能力。3. 稳定性源于细节控制锁定依赖版本、修复解析兼容性、合理设置超时,这些“小事”决定了系统的可用性。

2026-01-09 07:45:37 829

原创 CPU也能跑OCR?这款开源镜像无需GPU,推理速度低于1秒

这款基于CRNN的开源OCR镜像,真正实现了“零GPU依赖、高精度、快响应企业内部文档自动化处理系统边缘设备上的离线OCR功能(如POS机、扫描仪)教学演示、个人项目快速集成缺乏GPU资源但需OCR能力的初创团队选对模型架构 + 深度工程优化 + 用户体验优先的设计理念。

2026-01-09 07:33:50 468

原创 C语言接口封装尝试:CSANMT跨语言调用可行性验证

endif// 初始化Python环境与模型// 执行翻译(输入中文,输出英文)// 释放资源#endif本文完成了CSANMT模型从Python服务到C接口封装的可行性验证,证明了在保留高质量翻译能力的同时,通过C语言桥接可显著提升系统性能与集成灵活性。

2026-01-09 05:58:49 460

原创 M2FP模型性能深度测评:CPU环境下的推理速度与精度

M2FP 多人人体解析服务在纯CPU环境稳定性优先:锁定PyTorch 1.13.1 + MMCV 1.7.1黄金组合,彻底解决.so文件缺失、tuple index error 等经典兼容难题;功能完整闭环:从原始Mask输出 → 彩色分割图生成,内置拼图算法极大降低二次开发成本;精度可用性强:mIoU达76.3%,支持19类细粒度分割,在多数日常场景中结果可信;部署门槛极低:无需GPU、无需CUDA驱动、无需专业运维,适合中小企业私有化交付。

2026-01-09 03:04:35 873

原创 Z-Image-Turbo移轴摄影Miniature效果

移轴摄影中的Miniature效果是一种视觉欺骗艺术,它通过人为控制景深范围,使真实拍摄的大尺度场景(如城市街景、机场跑道)看起来像精心布置的微缩模型。浅景深聚焦:仅画面中心区域清晰,上下边缘逐渐模糊色彩饱和度提升:增强对比与亮度,模仿模型摄影灯光视角选择:常采用高空俯视角度,符合观察玩具模型的习惯传统实现方式需使用昂贵的移轴镜头或在Photoshop中手动添加渐变蒙版模糊。而AI时代,我们可以通过语义引导+生成控制的方式,在图像生成阶段直接模拟这一视觉特征。技术类比。

2026-01-08 15:26:46 410

原创 主流人体算法对比:Mask2Former-Parsing为何超越Deeplabv3+

维度 | M2FP 的核心优势 |准确性| 在 CIHP 和 MHP 数据集上 mIoU 超过 Deeplabv3+ 12% 以上 |复杂场景适应性| 能准确区分紧密站立的多人,解决“手腿错连”问题 |语义完整性| 支持多达 19 类细粒度部位划分(含左右对称部件) |扩展性| 基于 ModelScope 生态,易于接入新模型或微调私有数据 |

2026-01-08 12:32:43 687

原创 如何复现优质图像?Z-Image-Turbo种子机制使用详解

种子是通往确定性世界的钥匙。在扩散模型(如Z-Image-Turbo)中,图像生成过程始于一段完全随机的噪声矩阵。模型通过多步去噪逐步将其转化为符合提示词描述的图像。这个初始噪声的生成依赖于一个称为“随机种子”的数值。Z-Image-Turbo不仅仅是一个快速生成模型,更是一套面向工程化落地的AI图像解决方案。其种子机制的设计体现了对可重复性、可控性与协作效率的深刻理解。✅ 种子的基本用法与WebUI操作✅ 如何利用种子实现精准复现与渐进式优化✅ 底层实现原理与常见陷阱规避。

2026-01-08 11:45:37 637

原创 csdn热门教程:Z-Image-Turbo从安装到实战

是阿里通义实验室推出的高效AI图像生成模型,基于扩散机制优化推理流程,在保持高质量输出的同时实现极快生成速度。本教程由开发者“科哥”进行二次封装,推出易用的WebUI版本,支持本地一键部署、参数可视化调节与多场景应用落地。

2026-01-08 11:27:02 735

原创 USB转485驱动程序下载后的手动安装图文教程

详细介绍如何完成usb转485驱动程序下载后在Windows系统中的手动安装步骤,解决设备无法识别问题。结合常见场景,帮助用户快速实现串口通信连接,提升调试效率。

2026-01-08 09:35:05 901

原创 MGeo命令历史保存:避免重复输入conda activate指令

MGeo是阿里巴巴推出的一款面向地理语义理解的预训练模型,专为解决中文地址文本的细粒度相似度匹配而设计。高精度地址对齐:支持跨平台、跨格式的地址标准化与去重语义敏感建模:能识别“省/市/区”层级缩写、“路”与“道”替换等常见变体轻量级部署:支持单卡GPU(如4090D)快速部署,适合中小规模业务接入典型应用场景涵盖:- 电商平台订单地址清洗- 物流系统中收货地址合并- 城市治理中的POI(兴趣点)去重技术亮点。

2026-01-08 05:00:51 253

原创 乒乓球发球类型识别:训练辅助数据分析

若要测试自己的发球照片,请通过界面上传图片至,然后更新代码中的image_path变量。本文介绍了一套基于阿里开源“万物识别-中文-通用领域”模型的乒乓球发球类型识别方案,实现了从图像输入到数据分析的完整闭环。通过合理利用预训练模型的迁移能力,避免了大规模标注成本,同时保留了后续微调的空间。

2026-01-08 04:04:54 580

原创 社交平台青少年保护:不良信息图像过滤机制

仅靠固定负面标签难以覆盖所有变种。动态更新机制:建立敏感词库联动更新流程,定期同步最新监管要求聚类辅助发现:对高相似度但未命中标签的图像做无监督聚类,人工复核后补充新类别阿里开源的「万物识别-中文-通用领域」模型为中文社交平台的内容安全建设提供了高性价比、易集成、可扩展的解决方案。其在中文语义理解上的专项优化,使其在青少年不良信息过滤任务中表现出优于通用国际模型的适应性。

2026-01-07 12:23:04 761

原创 从Qwen3到Qwen3Guard:阿里云在安全方向上的战略升级路径

阿里云推出Qwen3Guard,将内容安全从外挂防御转为模型原生能力。通过生成式判定、多语言支持和流式实时防控,实现细粒度、可解释的风险识别。其Gen与Stream双模式协同,兼顾准确与效率,构建覆盖输入输出的全链路安全中枢,推动AI治理迈向工业化标准。

2026-01-06 16:48:14 764

原创 Coda文档动态审核:Qwen3Guard-Gen-8B实时分析协作内容

阿里云推出的Qwen3Guard-Gen-8B大模型,通过语义理解与生成式判定机制,实现对Coda协作文档的实时内容安全审核。支持多语言、三级风险分级和可解释判断,兼顾准确性与用户体验,助力企业构建智能、透明的内容治理体系。

2026-01-06 15:59:58 611

原创 NXP i.MX RT系列入门必看:nx核心架构详解

深入剖析NXP i.MX RT系列中的nx核心架构,揭示其高性能与低功耗的设计奥秘,帮助开发者快速掌握nx技术要点,提升嵌入式系统开发效率。

2026-01-06 15:20:01 593

原创 Multisim仿真电路图实例:课程设计入门必看

通过实用的multisim仿真电路图实例,快速掌握课程设计核心技巧,适合初学者上手操作,深入理解电路仿真流程与应用方法。

2026-01-06 14:06:45 559

MaxQuant-Workflow

使用 MaxQuant 分析无标签数据的工作流程 此工作流基于 Nextflow,在实施 SDRF 的情况下运行。 使用 NormalyzerDE 对 MaxQuant 结果进行归一化和统计比较。 内容 Nextflow 文件夹:工作流实现 数据文件夹:运行 UPS 数据集的附加数据(不包括 RAW 文件) 结果文件夹:UPS 数据集的结果。 入门 Nextflow 脚本需要想要运行的项目的 SDRF 文件,以及用于实验设计的文件 SDRF 可以在带注释的项目下找到,对于 PXD001819,该文件添加在数据下。 SDRF 文件的 URL: : NormalyzerDE 部件的实验设计文件也可以在数据文件夹中找到。 运行基准数据集 从 PRIDE 下载原始文件: : ID= 运行工作流,提供以下参数: rawfolder 和 nextflow 需要对目录进行读写访问。 路

2021-07-24

googlemaps-drawing:google.maps 形状编辑器

googlemaps-绘图 google.maps 形状编辑器 Replace with your google api key: _MAPS_KEY = "yourGoogleMapsKeyHere";

2021-08-03

postcss-deno:Deno 的 Postcss

Deno 的 PostCSS 用于转换 PostCSS 源代码以实现 Deno 兼容性的脚本。 sh run.sh 在你的 Deno 项目中导入 Postcss: import postcss from "https://deno.land/x/postcss/mod.js" ; import autoprefixer from "https://deno.land/x/postcss_autoprefixer/mod.js" ; const result = await postcss ( [ autoprefixer ] ) . process ( css ) ;

2021-07-23

grunt-locale-replace

grunt-locale-replace 替换

2021-07-22

LeetCode:这是我的 LeetCode 问题解答集

力码 这是我的 LeetCode 问题解决方案集。

2021-07-23

valbot:使用 TypeScript、MongoDB、Redis 和 NodeJS 构建的 Discord 机器人

ValariumBot Valarium 社区不和谐服务器的机器人。 先在项目根目录下运行tsc进行编译。 目录 积压 开发者笔记 你好! 阅读本文意味着您对该机器人的源代码感兴趣,幸运的是,它实际上是完全开源的。 我是 Nabil Tharwat,埃及的一名前端工程师。 关于与此代码库相关的任何事情,请随时与我联系。 如果您想请求某个功能,请在此 repo 上向我发送问题或在任何平台上与我联系。 想知道在哪里可以找到我吗? 前往iamnabil并选择您喜欢的平台。 我现在让你阅读文档。 祝你有愉快的一天! 动机 创建这个机器人首先是 Valarium 社区的首要需求,因为我们需要定制。 很多。 我们需要市场机器人无法提供的低级定制。 因此,作为一名完全没有经验的忍者专家 nodejs 开发人员(大声笑?),我决定挑战自己并自己制作。 生命周期 提交遵循定义为[<type>] &lt;

2021-07-24

rgd:rss - github 讨论 api

rgd RSS - GitHub 讨论 API npm install -g rgd # or npm install -D rgd Usage: rgd Options: --owner --repo --token: generate token - > https://github.com/settings/tokens/new --limit: if not set, all are requested by default, value is number, no more than 100. --outdir: default ` . ` --filename: default ` feed.xml ` --site-title: default ` RSS ` --site-link: defalut ` / ` --site-desc

2021-07-24

CONNECT:一个用于学习的 Socket.io React Js 实时多人闪存卡游戏

连接! 开始使用 CONNECT! 经济支持 :money_bag: 连接演示视频 :movie_camera: *这是网站的过时版本,因为网站仍在开发中。 最新版本将很快发布 CONNECT.Demo.mp4 连接网站 :globe_with_meridians: 未来设计 :artist_palette: 可用脚本 :man_technologist: 在项目目录中,您可以运行: npm install 这将安装运行应用程序所需的所有依赖项。 npm start 在开发模式下运行应用程序。 打开http://localhost:3000在浏览器中查看。 如果您进行编辑,页面将重新加载。 您还将在控制台中看到任何 lint 错误。 订阅 订阅尚未确定,将很快更改 起动机 课堂 企业 价钱 自由 10$ 100美元 球员 8 40 无限

2021-07-24

MiscTools:杂项工具

杂项工具 一系列杂项但有用的工具。 每个目录都有一个 README,解释了每个工具的用途。

2021-07-23

springboot-properties:SpringBoot配置项

关于 SpringBoot所有配置项的中文说明(使用翻译),由 整理提供。 如果您发现了任何错误或者有待改进的地方,请联系我们。或者提交帮助完善。我们对此表示由衷的感谢。 SpringBoot配置属性的官方文档 页面由 生成,托管于 最后更新时间:2020年9月10日 联系 邮箱: QQ群: 微信群: 请添加管理员微信:KevinBlandy,备注 springboot,管理员会主动邀请你进群(恶意刷广告的太多了,只能人工邀请) 其他 SpringBoot中文社区 SpringBoot Initializr 鸣谢 感谢他们,对本文档做出了贡献。

2021-07-24

cornbot:我的 Discord 机器人

玉米机器人 一个小的 Discord 机器人 命令 $help使用此文本编写帮助消息。 $say [any string]表示您在命令后写的内容。 $prefix [new prefix]更改机器人的前缀,直到它重新启动。 $showdata以可读格式显示机器人的 JSON 文件中的数据。 目前用于测试目的,没有用。 $changedata [name] [value]将文件中指定名称的条目更改为指定值。 $adddata [name] [value]添加具有指定名称和指定值的条目。 $removedata [name]删除具有指定名称的条目。 $datareset重置 JSON 文件中的所有数据。 只有 sav 可以使用它。 $seduce吐出一条随机的拾取线。 随着时间的推移会增加更多。 $ping乒乓球! $rate [person]对代码中的$rate [per

2021-08-03

react-music:React技术栈仿网易云

React技术栈仿网易云音乐 项目简介 网易云音乐曾是最喜欢的音乐网站,庞大的乐库,有意思的评论,网易云陪我度过了一个个图书馆泡馆的日子。但随着乐库优势逐渐丢失,早已从网易云慢慢转到其他平台。打包周杰伦乐库网易云一生黑!!!(bushi 不经意间泡馆的日子已经远去,想到网易云使用的技术栈,就是工作中熟悉的React,决定仿制之,权当纪念下曾经的网易云 GitHub上开源的网易云资源有许多,本项目后端 api 使用了 Nodejs api,感谢作者开源。项目目录参考了 老师的设计,感谢王红元老师开源。 项目已部署在阿里云(小水管,首屏加载较慢) 涉及到的网易云页面和功能如下 发现音乐 推荐 排行榜 歌单 主播电台:仅展示,接口提供的电台播放接口,测试无法使用 歌手 新碟上架 我的音乐:仅完成未登录时显示的内容 朋友:仅完成未登录时显示的内容 歌手主页 歌单主页 专辑

2021-08-03

Example-iframe:https 的 iframe 集成示例

Ready Player Me 嵌入为 iframe 此示例展示了将 Ready Player Me 头像创建者作为iframe嵌入到 html 前端并检索 3D 头像模型的 URL。 可以在找到更多详细信息。 关于 Ready Player Me 是元节的跨游戏化身平台。 我们为用户提供了一个可互操作的个人化身,可以与他们一起穿越许多虚拟体验。 开发人员使用我们的即插即用头像创建器,因此他们不必花费数月时间来构建自己的头像。 入门 访问以开始集成 Ready Player Me 或浏览。 社区 通过我们的与 Ready Player Me 社区联系。 成为合作伙伴 Ready Player Me 已经在。 想要将 Ready Player Me 头像添加到您自己的应用程序或游戏中吗? 申请或通过告诉我们。

2021-08-03

arxiv-canonical

arXiv NG 规范记录 该存储库包含用于处理核心 arXiv 规范记录的库和应用程序。 规范记录是 arXiv 平台上公布的电子印刷品的权威历史和状态。 该项目的工作将分两个阶段进行,每个阶段对应一个主要版本: 版本 0:将旧记录复制到规范记录 该项目的第一个主要目标是将遗留系统中发生的所有核心公告事件复制到云原生规范记录。 遗留系统通过 Kinesis 流为新的电子打印、替换、交叉列表、提款​​和更新发出事件通知。 公告代理(本回购中的announcement/ )... 消耗遗留事件, 从旧版中检索元数据、源包和首次编译的 PDF, 将内容格式化并存储为规范记录的一部分。 规范记录旨在在支持键值行为的任何存储平台上工作。 第一个实施将针对 AWS S3。 存储库服务(本存储库中的存储repository/ )通过 RESTful JSON API 使电子打印元数据、内

2021-07-24

360-sneakers-viewer:鸿星尔克全景(360°)鞋子展示(包含建模过程)

鸿星尔克720°全景看鞋展厅 模型拍摄设备: iphone 12 mini 该仓库主要分为 1.软件 2.训练图片 3.模型 4.实例展示 在线地址: 配套文章: 文章中的软件 训练照片地址: 作者微信: qiufengblue(加我请备注来意,例如"讨论模型相关")

2021-08-03

jsconf.jp:网站

配置文件 JSConf 日本网站 网址: : 发展 持续集成 我们使用作为这个项目的持续集成(CI)服务。 如果您想对 CircleCI 进行写访问,则需要对此 GitHub 存储库具有写权限。 构建配置文件位于.circleci/config.yml 。 为明年创建一个新网站 假设您创建了一个 2020 年的网站, 在创建一个名为2020的目录我们使用作为静态站点生成器来创建 2019 年的网站,但明年之后我们不需要继续使用 Gatsby。 使用一些易于使用且及时的工具。 如果继续使用 Gatsby,请参考了解项目结构。 将public/index.html的重定向目的地更改为新的网站 url 添加构建步骤以将构建工件放置在dist/2020就像如果您在 dist/2020 中放置构建工件,它将自动部署到https://jsconf.jp/2020 。

2021-07-24

gr-satellites:几个业余卫星的 GNU Radio 解码器

gr-卫星 gr-satellites 是一个 GNU Radio 树外模块,包含支持许多不同业余卫星的遥测解码器的集合。 这个开源项目始于 2015 年,目标是为所有在业余无线电频段上传输的卫星提供遥测解码器。 它支持最流行的协议,例如 AX.25、GOMspace NanoCom U482C 和 AX100 调制解调器、CCSDS 堆栈的重要组成部分、FUNcube 卫星中使用的 AO-40 协议以及其他卫星中使用的几个 ad-hoc 协议。 该树外模块可用于解码从轨道上的大多数业余卫星传输的帧,执行解调、前向纠错等。解码的帧可以保存到文件中或以十六进制格式显示。 对于某些卫星,遥测格式定义包含在 gr-satellites 中,因此解码的遥测帧可以打印为人类可读的值,例如总线电压和电流。 此外,一些卫星传输文件,如 JPEG 图像。 gr-satellites 可用于重新组合这

2021-07-24

wcag-primer:快速了解 Web 内容可访问性指南

WCAG 入门 帮助人们快速掌握 Web 内容可访问性指南的入门读物。 包含: WCAG 概述。 每个成功标准的信息 - 包括易于理解的解释、所需内容的详细信息、常见问题示例和进一步内容的链接 内容、设计和代码最相关的成功标准 一些问题可以帮助您评估数字产品是否符合 WCAG 贡献 此 WCAG 入门书适合所有人。您可以通过以下方式帮助确保它保持最新状态: 的更改。 要为此存储库做出贡献,您首先需要对其进行* 您可以从分叉副本中提出 PR。 向无障碍能力团队发送电子邮件至并提供建议 这个 repo 使用中间人。 要在本地测试更改,请运行: bundle exec middleman server 文本位于source/documentation文件夹中,采用 Markdown 格式。 部署更改 该项目持续部署 - 将拉取请求合并到 main 将导致构建站点并将任何更改添

2021-07-23

Crystal SVG icon port to mac and windows-开源

流行的 Crystal SVG 图标的端口设置为 windows XP 和 mac OS X。目前包含 133 个用于应用程序、文件夹、设备和 mime 类型的图标。

2021-07-26

Java and REST bindings for KOS-开源

JOnto 提供了一个开放框架,用于利用各种完善的知识组织系统,包括 DMoz、WordNet 或 DDC。 目的是尽可能轻松地访问该本体 - 通过将所有 RDF 相关问题隐藏在有意义的

2021-07-22

Linux系统管理与编程指南

本书是关于UNIX/Linux操作系统家族的工作、配置、管理和系统编程的全面指南,覆盖了Ubuntu、Fedora、openSUSE、Red Hat、Debian、Mandriva、Mint以及Mac OS X等系统。首先介绍了Linux的基础知识,包括命令行界面、常用工具、文件系统结构和shell特性。接着,书中详细探讨了两个广泛使用的文本编辑器vim和emacs,以及bash和tcsh shell的工作原理。第四部分深入讲解了系统管理中常用的编程工具,如bash编程、Perl脚本编写、sed和rsync工具。最后,作为参考手册,书中提供了超过一百个Linux命令的详细使用示例。本书适合从Linux和Mac OS X用户到系统管理员和程序员的广泛读者群体。

2025-04-13

形状分析缩减Java并发程序有限状态模型

本文探讨了如何使用形状分析技术来减少并发Java程序的有限状态模型的大小。形状分析通常用于优化器中计算别名信息,但在这里被应用于确定哪些堆分配的变量仅由单个线程访问,以及哪些共享变量受到锁的保护。这有助于简化并发程序的状态空间,进而降低有限状态模型的复杂性。文章还介绍了一种原型实现,证明了所提出的状态空间缩减方法的有效性。文章强调了有限状态验证工具(如模型检查器)对于检测并发错误的潜力,这些错误往往难以发现和重现。然而,从研究到实践的转化缓慢,主要障碍包括状态爆炸问题和模型构建问题。作者认为,自动化模型提取工具的发展将有助于加速这项技术从研究到实践的转化,并提出了一个针对Java语言的具体问题解决方案。

2025-03-08

电火花加工技术及其优化研究

本书主要探讨了电火花加工技术(ESP)在不同技术模式下对合金电极材料的影响,以及这些影响对钢制零件表面涂层的显微硬度、厚度和摩擦技术性能的具体作用。研究发现,随着电火花加工能量模式参数的增加,涂层的显微硬度和厚度均有所增加,而阳极-阴极电压的增加和电容器放电容量的增大则会导致金属-聚合物摩擦系统的磨损速度降低。研究还利用“急剧上升”方法确定了最佳的加工模式。通过实验,研究者们分析了不同合金电极材料对涂层性能的影响,并提出了通过优化电火花加工参数来提升加工效率和涂层质量的方法。

2025-02-26

Stack-Widget:为堆栈抽象创建分布式服务平台。 以小工具的形式向客户提供服务

堆栈小部件 小部件是一种应用程序或界面的组件,它使用户能够执行功能或访问服务。 . Stack-Widget 是一个允许与 STAAS(Stack As A Service Infrastructure)交互的访问组件 Stack-Widget-UI 斯塔斯 STAAS 是支持 Stack-Widget 的服务基础设施。 STAAS代表ST ACK A S A S ervice 三种模式 线程内服务 基于 Web Worker 基于网络。

2021-08-05

nocom-viewer:高内存使用参考实现

nocom-viewer

2021-08-04

svelte-pipeable-store:Svelte Store with pipe 方法

Svelte Pipeable Store 这是商店的 fork,添加了pipe方法。 商店可以通过许多运营商进行管道传输。 同步操作符包括: map , filter , scan , pluck , concat , tap , take , skip , startWith , withLatestFrom , bufferCount ,和readonly 。 异步操作符包括debounce 、 throttle 、 bufferTime和wait 。 安装 使用 npm 安装: npm install ' svelte-pipeable-store ' ; 用法 import { writable , map , filter , scan , pluck , concat , tap , take , skip , debounce ,

2021-08-05

gitdotio.github.io:使用@github URL Shortener 将 URL 重定向到您的网站

文档不是最新的。 要添加新的重定向,您需要将其添加到data/redirect.json 使用git.io重定向到您的网站 为什么? 是一种 URL 缩短服务,它将重定向到您的Github项目。 如果您尝试重定向到Github.com其他域(例如您的网站),您将无法做到。 所以将帮助你使用git.io超级简单地重定向到任何网站! 怎么做? 检查是否可用。 转到 。 使用要创建的链接的名称创建一个.html文件。 在文件中,您需要复制下面的代码并将其粘贴到您的文件中,并根据您的内容进行更改。 --- permalink: /your-beautiful-link destination: http://your-beautiful-site.com --- 就这样吗? 不! 现在,你可以去和复制gitdotio.github.io/your-beautiful-link

2021-08-04

capturetheflag:使用 Minetest CTF PvP 引擎夺旗游戏

夺旗 快速回合的 CTF 游戏。 移除了焦点节点。 安装 捕获标志使用几个子模块。 确保通过像这样克隆来获取它们: git clone --recursive https://github.com/MT-CTF/capturetheflag.git 系统要求 受到推崇的 使用dummy后端托管您的服务器。 最低限度 使用leveldb或redis后端托管您的服务器。 在 SSD 或 ramdisk 上使用sqlite3托管()。 执照 由创建。 代码:LGPLv2.1+ 纹理:CC-BY-SA 3.0 纹理 ctf_classes_skin_* 由 GreenDimond/GreenXenith 创建ctf_classes_skin_rocketeer 在 Lone_Wolf 的帮助下 :CC BY-SA 4.0 by xenonca 模组 查看以查看所有已安装的 mod 及其各自

2021-08-05

APIDemo.JavaScript-Codebar-Decoder-:CodeBar 解码器使用 Horus 项目 API 的示例

HORUS 项目:代码条解码器的 JavaScript 演示 用于识别 API 的 JavaScript 演示代码(Horus 项目) 安装: 要使用此演示,需要上传到 HTML 服务器类型 IIS 或 APACHE,并通过 HTTPS 连接 SSL 证书,否则浏览器将无法访问相机 在 API 函数中,我们可以找到: Horus 项目包含一个 REST API,它允许以简单的方式通过神经网络识别图像。 人脸识别 物体检测 二维码解码器 解码器 ID APLR(车牌自动识别) 使用可安装的应用程序管理 API 使用我们的网络管理员管理 API 使用 Swagger 的文档直接从您的背后管理 API 示例代码中使用的 URL 是: : 在第一阶段从可下载的软件中获取用户、密码和配置文件。 如何在此处使用管理员的示例: 联系我们: 关注我: 了解更多关于我们的

2021-08-04

Christopher-Xavier.github.io:一个简单的投资组合

X-PortfolioThinkful 深思熟虑的投资组合0

2021-08-04

breizhcrops.github.io

Breizhcrops.org breizhcrops 数据集的网站 启动网络服务器进行调试(python 3) cd templates python -m http.server

2021-08-04

cefet-web:CEFETMG 的 Web 编程课程

网络编程 教案弗拉维奥·库蒂尼奥 教案 内容概要 上的幻灯片〜课程内容 ~ 主题的目的和描述 ~ 基本和补充书籍和材料 ~ 积分分配的形式和积分 课程 (1/3) ~ Web 编程的历史和简介 ~ Web 的工作,HTML 和 CSS 的结构 ~ 列表、内联/块、表格、链接和食肉植物 :T-Rex: ~ 工具、元数据、多媒体和 DIV/SPAN ~ 重用、历史、浮动/清除和蜜蜂选择器 :honeybee: ~ 选择器特异性,道具。 显示、定位 HTML4 ~ 语义标签、伪事物、输入/按钮、盒子模型和困扰 :ghost: JS 1 ~ 历史,基本语法(类型、变量、函数) JS 2 ~ DOM、属性变化、事件和空间探索 :alien: 班级 (2/3) CSS 3 ~ Flexbox、网格、可见性、网络字体 CSS 4 ~布局、自定义属性和 Coral 55 :palm_tree: JS 3 ~ 模板字符串、对象、原型、箭头函数 JS

2021-08-04

langlangDental::man_health_worker: HTML5_CSS3基础学习项目 - 朗朗口腔

HTML5/CSS3基础教程 教程官网: 视频地址: 项目访问: 学习内容:原生页面布局、标签语义化;熟练掌握常规属性,CSS3 选择器,定位 position,浮动 float,弹性布局 flex,过渡,圆角,阴影,以及 CSS3 新特性属性等; 应用学习:vscode,phpstudy,photoshop,ftp,koala sass 预编辑等; 学习成效:读懂布局、公共模块抽离,ajax 数据渲染等;读懂 UI 样式,css 组合、公共样式抽离、sass 语法、雪碧图、页面优化等; 适用范围:PC 端、Ipad 端、移动端 web、H5 项目、Hybrid APP 混合开发等等;web 端项目基本通用; 第1学时 1.1 认识 HTML 标签 1.2 CSSReset 不同的浏览器对不同的标签有自己内置的样式设置,这是全局性的样式,不同浏览器之间可能设置还不一样,并且内置的样式可

2021-08-04

pixhexStudio

创建 React 应用程序入门 这个项目是用引导的。 可用脚本 在项目目录中,您可以运行: npm start 在开发模式下运行应用程序。 打开在浏览器中查看。 如果您进行编辑,页面将重新加载。 您还将在控制台中看到任何 lint 错误。 npm test 在交互式观察模式下启动测试运行器。 有关更多信息,请参阅有关的部分。 npm run build 将用于生产的应用程序构建到build文件夹。 它在生产模式下正确地捆绑了 React 并优化了构建以获得最佳性能。 构建被缩小,文件名包括哈希值。 您的应用程序已准备好部署! 有关更多信息,请参阅有关的部分。 npm run eject 注意:这是一种单向操作。 一旦eject ,就回不去了! 如果您对构建工具和配置选择不满意,您可以随时eject 。 此命令将从您的项目中删除单个构建依赖项。 相反,它会将所有配置文件和可

2021-08-04

ecqm-content-r4-2021:FHIR R4 的 eCQM 2021 内容

ecqm-content-r4-2021 eCQM 测量内容 (FHIR R4 v4.0.1) 该存储库包含所有基于 FHIR 的 eCQM 的 2021 测量工件。 它的设置与任何 HL7 FHIR IG 项目一样,但还包括 CQL 文件和测试数据,这意味着文件结构如下: |-- _genonce.bat |-- _genonce.sh |-- _refresh.bat |-- _refresh.sh |-- _updatePublisher.bat |-- _updatePublisher.sh |-- _updateCQFTooling.bat |-- _updateCQFTooling.sh |-- ig.ini |-- bundles |-- measure |--EXM124

2021-08-05

chat_app_reactjs

欢迎使用 MS Teams 克隆! 介绍 这是使用 React JS 和构建的 Microsoft Teams 克隆! React JS 是首选的编程语言,而聊天引擎是一组特定于聊天的 API 和 UI 套件。 它是学习React和创建产品准备就绪的一个很好的例子!

2021-08-05

GeoSFX:自解压 GeoJSON 构建压缩的 GeoJSON,分布在 JSONP 上,以紧凑、无依赖的 Javascript 文件形式发布

地理特效 自解压 GeoJSON,一种在紧凑、无依赖的 Javascript 文件中构建分布在 JSONP 上的压缩 GeoJSON 的工具 ...工作正在进行中... 安装 $ npm install 跑步 $ node app.js

2021-08-04

Windows 10 Tweak Tool:单击几下即可禁用 Windows 10 中的所有废话。-开源

Windows 10 有很多加载 PC 的无用服务和进程,所以为什么不禁用它们。 使用 Windows 10 调整工具,只需点击几下即可完成。 Ps MVC 2019 打包并以管理员身份运行才能正常工作

2021-08-08

PerlChatroom-开源

用 PERL 编写的聊天室。 该聊天室可以通过telnet进入,不需要任何外部程序。

2021-08-07

SeDiM-开源

SeDiM 是一种基于通用组件的框架方法,用于开发可配置和动态可重新配置的服务发现中间件,以便在普遍环境中运行。

2021-08-06

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除