题目:
给定一个正整数 n,你可以做如下操作:
1. 如果 n 是偶数,则用 n / 2
替换 n。
2. 如果 n 是奇数,则可以用 n + 1
或n - 1
替换 n。
n 变为 1 所需的最小替换次数是多少?
示例 1:
输入: 8 输出: 3 解释: 8 -> 4 -> 2 -> 1
示例 2:
输入: 7 输出: 4 解释: 7 -> 8 -> 4 -> 2 -> 1 或 7 -> 6 -> 3 -> 2 -> 1
思路:
这道题求最小解,所以考虑用 dfs 做,思路很清晰, 先把问题简单化:当有一个不被二整除的数字进来时,我们只有两种选择,即加一 和 减一,当进来的数能被二整除则继续除即可。当然,我们还需要一个函数出口,即判断数的值为 1 ,若是说明一条路径执行完毕,比较最小值。后面就开始进行回溯,从而求出最小值。
提交时候遇到一个错误,就是整数最大值,2147483647。它加一之后溢出了(int),只能减一。有三种方法,一是遇到他直接减一,二是直接返回32,三是将子函数的 int 型转变为 long long 即可。注释的为后面看到的别人的方法,可以借鉴一下。
程序:
class Solution {
public:
int minNum = INT_MAX;
int integerReplacement(int n) {
// if (n == INT_MAX) return 32;
dfs((long long)n,0);
return minNum;
}
void dfs(long long n,int i){
if (n == 1){
if (i < minNum)
minNum = i;
return;
}
if (n%2 != 0)
dfs(n+1,i+1);
if (n%2 != 0)
dfs(n-1,i+1);
if (n%2 == 0)
dfs(n>>1,i+1);
}
};
/*
class Solution {
public:
int integerReplacement(int n) {
if (n == 1) return 0;
if (n % 2 == 0) return integerReplacement(n >> 1)+1;
int add = integerReplacement((n >> 1) + 1) + 2;
int del = integerReplacement(n - 1) + 1;
return min(add, del);
}
};
*/