题目描述
一只袋鼠要从河这边跳到河对岸,河很宽,但是河中间打了很多桩子,每隔一米就有一个,每个桩子上都有一个弹簧,袋鼠跳到弹簧上就可以跳的更远。每个弹簧力量不同,用一个数字代表它的力量,如果弹簧力量为5,就代表袋鼠下一跳最多能够跳5米,如果为0,就会陷进去无法继续跳跃。河流一共N米宽,袋鼠初始位置就在第一个弹簧上面,要跳到最后一个弹簧之后就算过河了,给定每个弹簧的力量,求袋鼠最少需要多少跳能够到达对岸。如果无法到达输出-1
输入描述:
输入分两行,第一行是数组长度N (1 ≤ N ≤ 10000),第二行是每一项的值,用空格分隔。
输出描述:
输出最少的跳数,无法到达输出-1
思路:
虽然这里没有涉及到图,但是基本思路有点类似深度优先搜索。若当前木桩上弹簧的弹力值为n,则下一跳就有n种可能,可以往前跳1个木桩、2个木桩、......、跳n个木桩。这是代码注释里提到的"众多可能性"。另外需要一个额外的数组stepArr来记录到达彼岸所需的最少跳跃次数,不然会超时。
import java.util.Scanner;
public class KangarooRiver {
private static int[] stakeArr;//记录弹簧的弹力
private static int[] stepArr;//记录当前木桩到达目的地的最小跳跃次数
private static int width;//木桩的个数 等于 stakeArr.length
public static void main(String[] args) {
start();
int jump = shortestStep(0);
System.out.println(jump>width?-1:jump);//若弹跳次数>width 说明无解
}
private static void start() {
Scanner scn = new Scanner(System.in);
int num = scn.nextInt();
width = num;
stakeArr = new int[num];
stepArr = new int[num];
for(int i = 0;i<num;i++) {
stakeArr[i] = scn.nextInt();
}
scn.close();
}
/**
* @param index 木桩的位置,也就是skateArr的下标索引
* @return 当前木桩到达彼岸的最小弹跳次数
*/
private static int shortestStep(int index) {
if(stepArr[index]!=0)//查询前 先看是否之前已经查询过,若查询过直接获取即可,不需要再次查询
return stepArr[index];
int[] temp = new int[stakeArr[index]];//弹簧的弹力数值大小 决定下一步弹跳距离的"众多可能性"
for(int i = 0;i<temp.length;i++) {//循环遍历 上面的"众多可能性"
if(i+1+index>=width)//index指当前木桩的位置,i+1代表弹跳的距离,(i+1)+index>width代表 成功到达彼岸
temp[i] = 1;
else
temp[i] = 1+shortestStep(index+i+1);
}
int shortestJump = width+1;//这里没有让shortestJump = temp[0]是因为有可能arr[index]=0
for(int i=0;i<temp.length;i++) {//再次遍历众多可能性,选择最短的一个路径
if(shortestJump>temp[i])
shortestJump = temp[i];
}
stepArr[index] = shortestJump;//记录下来当前木桩到达彼岸的最短弹跳次数,该次数若大于width说明无解
return shortestJump;
}
}