装箱问题

装箱问题是NP问题,即在多项式时间内无法精确求解,一般采用近似算法,即启发式算法,这样可以迅速得到满意解,而不一定是最优解。

常见的算法:NF(Next Fit)近似算法,FF(First Fit)近似算法,FFD(First Fit Decreasing)近似算法,BF(best Fit),BFD(Best Fit Deceasing)等。

下次适应算法(NF):NF算法是最简单也是最早研究的一个算法,它的处理方法是始终维持一个当前打开的箱子,对于每一个要装入的物品,检查该物品是否可以放入当前打开的箱子,如果无法装入,则打开一个空箱子,装入该物品,以该箱子作为当前的箱子,由于每个物品在装入时,只有当前打开的箱子和空箱可以选择,这必然造成装箱的效率低下。

首次适应算法(FF):针对下次适应算法的缺陷,首次适应算法处理当前物品的时候,检查所有非空箱子,找到第一个能够放下当前物品的箱子并将该物品放入,否则则开启新的箱子。

最佳适应算法(BF):与首次适应算法类似,唯一的区别时当物品装箱时,不是直接装在第一个可装入的箱子中,而是装入在最适合该物体的箱子中,如果没有该箱子,则开启空箱。

首次适应算法和最佳适应算法有一个缺陷,即由于物品没有实现排序,则可能由于先装入小的物品,使大的物品在后来放入时无法装入,只得开启新的箱子,造成了空间的浪费,因此才有了这两种算法的改进算法。

降序首次适应算法(FFD):先对物品按降序排序,再按照首次适应算法进行装箱。

降序最佳适应算法(BFD):先对物品按降序排序,再按照最佳适应算法进行装箱。

阅读更多
文章标签: 算法
个人分类: 动态规划
上一篇三进制与一道经典的砝码问题
下一篇UNIX/LINUX编程学习之文件锁、记录锁
博主设置当前文章不允许评论。

没有更多推荐了,返回首页

关闭
关闭
关闭