1、用四个砝码称出1—40克所有重量,四个砝码分别为多少?
原题 :一个农夫借给他的的邻居机械工40磅的重物。遗憾的是,机械工不小心把重物摔成了四份。不过值得高兴的是,机械工说,使用这四分可以在天平上称出0-40磅的任何重物。问每份的重物是多少?
方法一:这个在数学上叫做梅氏砝码问题,其叙述如下: 若有n个砝码,重量分别为M1,M2,……,Mn,且能称出从1到(M1+M2+……+Mn)的所有重量,则再加一个砝码,重量为Mn+1=(M1+M2+……+Mn)*2+1,则这n+1个砝码能称出从1到 (M1+M2+……+Mn+Mn+1)的所有重量。
解决思路 :
1克的法码是无论如何要用的
其次需要准备的法码设为x克,就可以称x+1克和x-1克。
由于x-1克是在1克的基础上继续加1克的重量所以 x-1=1+1 ,即 x=3 。
根据上式可以称出 1、2=3-1、3、4=3+1克。
把要准备的第三个法码设为y克,由于第二个法码可以称到4克,所以又可以称y-4、y-3、y-2、y-1、y、y+1、y+2、y+3、y+4克的重量。由于y-4是在4克的基础上继续加1克的重量,所以 y-4=4+1。即 y=9。因此可以称出1、2=3-1、 ...
取n=1,M1=1,则可以依此类推出所有砝码的重量为:1,3,9,27,81,243,……
分别是1,3,9,27共4个,和刚好为40
方法二:砝码重量应为1、3、9、27。
2=3-1
4=3+1
5=9-1-3
7=9+1-3
11=9+3-1
14=27-1-3-9。即一边放27克的砝码,另一边放1、3、9克三个砝码和所称物品。
40=1+3+9+27。
方法三:用四个砝码称出1—40克所有重量,四个砝码分别为多少?
这实际上是找出4个自然数,将它们(全部,或一部分)进行加减运算后能够得出1~40的问题。
首先是第一个数。自然是1。1=1。
其次是第二个数。必须保证得到答案2。可以是2或3。
选2,则:2-1=1,2=2,2+1=3。
选3,则:3-1=2,3=3,3+1=4。
选3能够得出更多的答案。选3以上的数,不能得出2。
其次是第三个数。以上已得到1~4,下一个数,必须保证得到答案5。可以是5~9。
选5,则:5-1=1,5-3 1=3,……,5+3+1=9。
选9,则:9-3-1=5,9-3=6,……,9+3+1=13。
选9能够得出更多的答案。选9以上的数,不能得出5。
最后是第四个数。必须保证得到答案14。可以是14~27。
选14,则:14-1=13,14=14,……,14+9+3+1=27。
……
选27,则:27-9-3-1=14,……,27+9+3+1=40。
选27能够得出更多的答案。选27以上的数,不能得出14。
至此,已得出1~40,且所选的数为4个:1,3,9,27。
以上是小学生能够理解的。
严格的论证,参考:梅氏砝码问题(略)。
2、三只砝码称东西
现在有三种不同重量的标准砝码1克、3克、9克。请问可以称出多少不同物品的重量?在进行称量时,要称的东西与已知的标准砝码可以任意地放在天平的两盘之一。另外,每种砝码都只有一只,而且不准复制。
请简单说明过程
1到13克中任何一个都能称量
1克的物品,一边放1克砝码,一边放物品
2克的物品 一边放3克砝码,一边放物品 1克砝码
3克的物品,一边放3克砝码,一边放物品
4克的物品,一边放1克砝码和3克砝码,一边放物品
5克的物品,一边放9克砝码,一边放1克砝码和3克砝码 物品
6克的物品,一边放9克砝码,一边放物品 3克砝码
7克的物品,一边放9克砝码 1克砝码,一边放物品 3克砝码
8克的物品,一边放9克砝码,一边放物品 1克砝码
9克的物品,一边放9克砝码,一边放物品
10克的物品,一边放1克砝码 9克砝码,一边放物品
11克的物品,一边放9克砝码 3克砝码,一边放物品 1克砝码
12克的物品,一边放9克砝码 3克砝码,一边放物品
13克的物品,一边放1克砝码 9克砝码 3克砝码,一边放物品
3、 现有质量分别为9克和13克的砝码若干只,在天平上要称出质量为3克的物体,最少要用几只这样的砝码.
由于9克砝码的总质量和13克砝码的总质量的差必须等于3克,而9克砝码的总质量肯定是3的倍数,所以13克砝码的总质量也必须是3的倍数,那么13克砝码的个数至少有3个.那么9克砝码的总质量就至少是(13?3?3)?9?4个,一共是7个.
答案: 7.
4、给你一架天平和两个砝码,这两个砝码分别重50克和100克,如果再添上3个砝码,则这5个砝码能称出的重量种类最多是多少种?(天平的左右两盘均可放砝码)
做法:
50 100可以构造出50 100 150 三个数,设其它三个数为a b
c,由这三个数构造出来的任意一个数x与50结合可构造出50 x和50-x两个数,加上100 x
100-x 150 x 150-x共6个数,
现在的问题就是由a、b、c通过加减运算构造出尽可能多的数(每两个都不相等就行了)
不妨设a>b>c
相加,
a b c a b b c c a a b c
一个减一个的有
a-b b-c a-c,
两个加起来减一个的有
a b-c a c-b b c-a
这样最多13个
下来的问题就是构造一下,得出的这13个数不会一样就行了
用5 7 11
可构造出:5 7 11 12 16 18 23 2 4 6 1 9 13这13个数
13×6 13 3=94
5、现有质量分别为5克和23克的砝码若干只,在天平上要称出质量为4克的物体,问至少要用多少只这样的砝码才能称出?
证明如下:
易知只用一种砝码是不行的,所以要两种都用,先考虑23克砝码的个数,设为x,设5克砝码是y个,{则23x=5y加减4
所以23x的尾数必然是1,4,6,9中的一个
所以x的尾数必然是2,3,7,8的一个
从小往大依次试验
x=2,y=10
x=3,y=13
x=7,....}
可知随着x的增大,y值也是增大的
注{}内的是一种思路,也许在这类题的别的题上会帮到你,但是这题好像是不用也可以
所以最少用10 2=12个砝码
6、一架天平有1克,2克,4克,8克的砝码各一个,用这4个砝码在天平上能称出多少种不同重量的物体
最少1克,最多1 2 4 8=15克,所以只要考虑1到15之间有没有不能称出的重量即可。1;2,3=1=2;4;5=4 1;6=4 2;7=4 2 1,8;9=8 1,10=8 2;11=8 2 1;12=8 4;
13=8 4 1;14=8 4 2;15=8 4 2 1,共15种
7、现在有质量分别为1g、2g、3g、4g、8g的砝码各一枚.用这些砝码在天平上共可称出多少种不同的质量?
方法一:
1g--18g都可以称出来,也就是18种
1=1
2=2
3=3
4=4
5=1 4
6=2 4
7=3 7
8=8
9=1 8
10=2 8
11=3 8
12=4 8
13=1 4 8
14=2 4 8
15=3 4 8
16=1 3 4 8
17=2 3 4 8
18 1 2 3 4 8
方法二:18种,
第一次取1个砝码的组合,然后取2个砝码组合,以此类推,直到取到5个砝码的组合,去掉质量重复的,统计剩下的
1个:1、2、3、4、8
2个:5、6、7、9、10、11、12
3个:13、14、15
4个:16、17
5个:18
8、如何制造个数最少的一些单位砝码,如1克,2克,3克,4克,......,使用这些单位砝码能够称出从1克到1000克之间的任何整数克重量的物体?
分析:1,3,9,27,81,243,729.
至少7个。