java数据库大量数据同步保存处理方法
一 场景
当有大量数据需要保存到数据库时,此时若是一条一条的保存,将会多次进行I/O交互,而且大量数据还会让数据库崩溃,这个时候就需要进行优化处理。
二 实现
一 实现思路(redis缓存+分段批量插入)
第一步: 将需要保存到数据库中的数据放到缓存中
第二步:从缓存中分段读取数据,进行批量保存
第三步:删除缓存中的数据
二 实现代码
//第一步: 将大量数据放入缓存中
listCacheSvc.rightPush(CacheKey.SYNC_ID.append("test"), dataObj);
//第二步:分段读取缓存并进行批量保存到数据库中
long orgStartSize = 0;
boolean hasOrgData = true;
if (listCacheSvc.hasKey(CacheKey.SYNC_ID.append("test"))) {
while (hasOrgData) {
long orgEndSize = orgStartSize + 499;
List<Object> orgJsonList = listCacheSvc.range(CacheKey.SYNC_ID.append("test"), orgStartSize, orgEndSize);
orgStartSize += 501;
if (CollectionUtils.isEmpty(orgJsonList)) {
hasOrgData = false;
continue;
}
if (!CollectionUtils.isEmpty(orgJsonList)) {
log.debug("保存组织架构数据-----开始");
insertDbOrgBatch(orgJsonList);
log.debug("保存组织架构数据----结束");
}
}
//第三步:清空缓存
listCacheSvc.del(CacheKey.SYNC_ID.append("test"));
public List<HrGroupEntity> insertOrgList(List<HrGroupEntity> list) {
List<HrGroupEntity> result = new ArrayList<>();
int insertLength = list.size();
int i = 0;
while (insertLength > 1000) {
List<HrGroupEntity> orgEntityList = hrGroupRepo.saveAll(list.subList(i, i + 1000));
result.addAll(orgEntityList);
i = i + 1000;
insertLength = insertLength - 1000;
}
if (insertLength > 0) {
List<HrGroupEntity> orgEntityList = hrGroupRepo.saveAll(list.subList(i, i + insertLength));
result.addAll(orgEntityList);
}
return result;
}