带你了解树的全家桶(BST树到AVL树到B树到B+树)

本文详细介绍了从二叉查找树(BST)到AVL树,再到B树和B+树的演变过程,分析了它们各自的特点、查询效率、插入删除操作,以及在数据库索引中的应用。特别是B+树,因其在范围查询和磁盘读写上的优势,成为数据库索引的首选结构。
摘要由CSDN通过智能技术生成

一、BST树—二叉查找树

简介:

二叉查找树(Binary Search Tree,BST),又叫做二叉排序树、二叉搜索树,是一种对查找和排序都有用的特殊二叉树。

性质:

若它的左子树不空,则左子树上所有结点的值均小于它根结点的值。
若它的右子树不空,则右子树上所有结点的值均大于它根结点的值。
这一规则适用于二叉查找树中的每一个节点。

优点:

查询的时间复杂度比链表快,链表的查询时间复杂度是O(n),二叉排序树平均是O(logn)。二叉排序树越平衡,越能模拟二分法,所以和二分法的查询的时间复杂度一样都为O(logn)。二叉排序树如下图:
在这里插入图片描述

缺点:

如果插入的结点的值的顺序,是越来越小或者越来越大的,那么BST就会退化为一条链表,那么其查询的时间复杂度就会降为O(n)。如下图ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

@烟雨倾城ゝ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值