堆排序Java实现

相关概念

大顶堆:每个结点的值都大于或等于其左右孩子结点的值

小顶堆:每个结点的值都小于或等于其左右孩子结点的值

图示:


相关特点

  • 最坏时间复杂度为o(nlogn)
  • 最好时间复杂度为o(nlogn)
  • 平均时间复杂度为o(nlogn)
  • 平均空间复杂度为o(1)
  • 不稳定
  • 数据结构是数组

基本思想

堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。

算法描述

  • 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
  • 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
  • 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。

代码实现

下标从0开始

package JBSort;
/**
 * 堆排序
 */
public class HeapSort {

		public static void main(String[] args){
			int[] array = {39,44,1,0,8,66,23,67,9,15,100,70,22,3,6,54};
			HeapSort heapSort = new HeapSort();
			heapSort.heapSort(array);
			for(int i = 0;i<array.length;i++){
				System.out.println(" "+array[i]);
			}
		}
		/**
		 * 排序算法
		 * @param a
		 */
		public void heapSort(int [] a){
			if(a == null||a.length<=1){
				return;
			}
			//创建大堆
			buildMaxHeap(a);
			for(int i = a.length-1;i>=1;i--){
				//最大元素已经排在了下标为0的地方
				exchangeElements(a, 0, i);//堆顶元素与最后一个元素交换,将最大元素沉淀到末尾
				maxHeap(a, i, 0);//进行大堆调整,用于构造大堆的数组长度会递减,每次调整大堆时下标都是从0开始
			}
		}

		/**
		 * 创建大堆
		 * @param a
		 */
		private void buildMaxHeap(int[] a) {
			int half = (a.length -1)/2;//假设长度为9
			for(int i = half;i>=0;i--){
				//只需遍历43210
				maxHeap(a,a.length,i);//a.length(多少个元素),i(从哪个结点开始)
			}
		}

		//length表示用于构造大堆的数组长度元素数量
		private void maxHeap(int[] a, int length, int i) {
			int left = i*2+1;
			int right = i*2+2;
			int largest = i;//i当成根结点
			if(left<length&&a[left]>a[i]){//左孩子大于根结点
				largest = left;           //把左孩子放到largest
			}
			if(right<length&&a[right]>a[largest]){//右孩子比largest还大
				largest = right;      // 把右孩子放到largest
			}
			if(i!=largest){//largest!=1说明根节点不是最大值
				exchangeElements(a,i,largest);//进行数据交换
				maxHeap(a, length, largest);//以largest为根结点再进行大堆判断
			}
		}

		//在数组a里进行两个下标元素交换
		private void exchangeElements(int[] a, int i, int largest) {
			int temp = a[i];
			a[i] = a[largest];
			a[largest] = temp;
		}
	}

代码解析:




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值