相关概念
大顶堆:每个结点的值都大于或等于其左右孩子结点的值
小顶堆:每个结点的值都小于或等于其左右孩子结点的值
图示:
相关特点
- 最坏时间复杂度为o(nlogn)
- 最好时间复杂度为o(nlogn)
- 平均时间复杂度为o(nlogn)
- 平均空间复杂度为o(1)
- 不稳定
- 数据结构是数组
基本思想
堆排序(Heapsort)是指利用堆这种数据结构所设计的一种排序算法。堆积是一个近似完全二叉树的结构,并同时满足堆积的性质:即子结点的键值或索引总是小于(或者大于)它的父节点。
算法描述
- 将初始待排序关键字序列(R1,R2….Rn)构建成大顶堆,此堆为初始的无序区;
- 将堆顶元素R[1]与最后一个元素R[n]交换,此时得到新的无序区(R1,R2,……Rn-1)和新的有序区(Rn),且满足R[1,2…n-1]<=R[n];
- 由于交换后新的堆顶R[1]可能违反堆的性质,因此需要对当前无序区(R1,R2,……Rn-1)调整为新堆,然后再次将R[1]与无序区最后一个元素交换,得到新的无序区(R1,R2….Rn-2)和新的有序区(Rn-1,Rn)。不断重复此过程直到有序区的元素个数为n-1,则整个排序过程完成。
代码实现
下标从0开始
package JBSort;
/**
* 堆排序
*/
public class HeapSort {
public static void main(String[] args){
int[] array = {39,44,1,0,8,66,23,67,9,15,100,70,22,3,6,54};
HeapSort heapSort = new HeapSort();
heapSort.heapSort(array);
for(int i = 0;i<array.length;i++){
System.out.println(" "+array[i]);
}
}
/**
* 排序算法
* @param a
*/
public void heapSort(int [] a){
if(a == null||a.length<=1){
return;
}
//创建大堆
buildMaxHeap(a);
for(int i = a.length-1;i>=1;i--){
//最大元素已经排在了下标为0的地方
exchangeElements(a, 0, i);//堆顶元素与最后一个元素交换,将最大元素沉淀到末尾
maxHeap(a, i, 0);//进行大堆调整,用于构造大堆的数组长度会递减,每次调整大堆时下标都是从0开始
}
}
/**
* 创建大堆
* @param a
*/
private void buildMaxHeap(int[] a) {
int half = (a.length -1)/2;//假设长度为9
for(int i = half;i>=0;i--){
//只需遍历43210
maxHeap(a,a.length,i);//a.length(多少个元素),i(从哪个结点开始)
}
}
//length表示用于构造大堆的数组长度元素数量
private void maxHeap(int[] a, int length, int i) {
int left = i*2+1;
int right = i*2+2;
int largest = i;//i当成根结点
if(left<length&&a[left]>a[i]){//左孩子大于根结点
largest = left; //把左孩子放到largest
}
if(right<length&&a[right]>a[largest]){//右孩子比largest还大
largest = right; // 把右孩子放到largest
}
if(i!=largest){//largest!=1说明根节点不是最大值
exchangeElements(a,i,largest);//进行数据交换
maxHeap(a, length, largest);//以largest为根结点再进行大堆判断
}
}
//在数组a里进行两个下标元素交换
private void exchangeElements(int[] a, int i, int largest) {
int temp = a[i];
a[i] = a[largest];
a[largest] = temp;
}
}
代码解析: