HDU 4507 吉哥系列故事——恨7不成妻(数位dp)

链接: 吉哥系列故事——恨7不成妻

题意:
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关
  1、整数中某一位是7;
  2、整数的每一位加起来的和是7的整数倍;
  3、这个整数是7的整数倍;
求给定区间与7无关的数的平方和。
思路:

  1. 三个条件都是数位 dp中很好求的条件,但这个题不是求与7无关的数的个数,而是求平方和。
  2. dp 记忆化的状态还是和普通的一样,维护一个 pos ,数位和对7的余数,以及这个数对7的余数。
  3. 关键是怎么求平方和,感觉对递归的理解要求挺高的,假设当前选的是第 3 位(字母不太好表示和理解,直接用数字更清楚),并且选的数为 2,假设已经算出来 上一层的平方和为 qs,和为 s .当然还要知道有多少个数满足条件,这个很容易求出来 ,假设是 cnt(还是 2 个吧,15,16,字母实在不好表达) 个。那么可以得到新的平方和为 (200+15)^ 2+(200+16)^ 2 展开 就是 2 * 200 ^ 2 +2 * 200 * (15+16) +( 15 ^ 2 + 16 ^ 2 ) 可以发现 200^2前的 系数 2 就是 cnt ,(15+16) 是上一层的 s ,( 15 ^ 2 + 16 ^ 2 ) 是上一层的 qs 那么递归可以达到这种效果,和求 cnt 一样,所以 递归 维护三个值 cnt ,s,qs.然后就和普通的数位 dp没有太大区别了。

代码:

#include<iostream>
#include<cstdio>
#include<map>
#include<math.h>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=1e6+7;
const ll mod=1e9+7;
struct node {
    ll cnt,sum,qsum;
    node():cnt(0),sum(0),qsum(0) {}
    node(ll c,ll s,ll qs):cnt(c),sum(s),qsum(qs) {}

} dp[20][8][8];
ll p[23],x[23],T,l,r;
node dfs(int pos,int m,int s,int limit) {
    if(pos==-1) {
        if(m==0||s==0) return {0,0,0};
        return {1,0,0};
    }
    if(!limit&&dp[pos][m][s].sum!=0) return dp[pos][m][s];
    int up=limit ? x[pos] :9;
    node ans;
    for(int i = 0; i <= up; i ++) {
        if(i == 7) continue;
        node now= dfs(pos-1, (m*10+i) % 7, (s+i) % 7, limit && x[pos] == i);
        ll v= i* p[pos] % mod,vv= v*v % mod;
        ans.cnt= (ans.cnt + now.cnt) % mod;
        ans.sum= (ans.sum + v*now.cnt % mod + now.sum % mod) % mod;
        ans.qsum= (ans.qsum + vv*now.cnt % mod+2*(now.sum)* v % mod+now.qsum) % mod;
    }
    if(!limit) dp[pos][m][s] = ans;
    return ans;
}
ll solve(ll xx){
   int pos=0;
   while(xx>0){
        x[pos++]=xx%10;
        xx/=10;
   }
   node ans=dfs(pos-1,0,0,1);
   return ans.qsum % mod;
}
int main () {
    p[0]=1;
    for(int i= 1; i<= 20; i++) {
        p[i]=p[i-1]*10%mod;
    }
    cin>>T;
    while(T--){
         cin>>l>>r;
         cout<<(solve(r)-solve(l-1)+mod)%mod<<endl;
    }
}


### DeepSeek 本地部署后调用本地数据的方法 在完成 DeepSeek 的本地部署之后,为了能够有效地利用本地存储的数据资源并对其进行操作,通常需要遵循特定的工作流程来确保数据的安全性和高效访问。 #### 配置环境变量以指向本地文件路径 当准备使用本地计算机上的数据时,应当先配置好相应的环境变量以便程序可以识别这些位置。这一步骤对于不同操作系统可能有所差异,在 Linux 或 macOS 下可以通过编辑 `.bashrc` 文件实现;而在 Windows 上则需通过系统属性中的高级设置来进行设定[^1]。 ```shell export DEEPSEEK_DATA_PATH=/path/to/your/local/data/folder ``` 此命令会将 `DEEPSEEK_DATA_PATH` 设置为指定目录作为默认读取源。 #### 使用 API 接口上传或加载本地数据集 DeepSeek 提供了一系列 RESTful APIs 来支持外部应用与其交互。其中就包含了用于导入新数据集合的功能端点。开发者可以根据官方文档说明构建 HTTP 请求向服务器发送指令,从而把位于个人设备内的资料迁移到平台内部数据库中去处理分析。 ```python import requests url = 'http://localhost:8000/api/v1/datasets' headers = {'Authorization': 'Bearer YOUR_ACCESS_TOKEN'} files = { 'file': open('/path/to/file.csv', 'rb') } response = requests.post(url, headers=headers, files=files) if response.status_code == 201: print('Dataset uploaded successfully.') else: print(f'Failed to upload dataset. Status code {response.status_code}') ``` 上述 Python 脚本展示了怎样借助 POST 方法提交 CSV 类型的表格至远程服务实例上运行的任务队列等待进一步解析转换成结构化信息形式存入仓储之中待后续检索查询之用。 #### 构建自定义工作流集成本地数据源 除了直接传输静态文件外,还可以创建更加复杂灵活的应用场景——即让整个应用程序参与到更广泛的企业级业务逻辑当中。此时就需要设计专属的知识获取(RAG)管道,允许实时抓取消息总线的动态更新事件或是周期性扫描共享磁盘空间内新增加的内容片段,并自动触发关联动作如索引重建、特征提取等自动化任务执行过程。 ```json { "name": "Custom Data Ingestion Workflow", "description": "A workflow that integrates local data sources into the system.", "steps": [ {"type": "trigger", "source": "/local/path/*"}, {"type": "processor", "action": "parse_csv"}, {"type": "output", "destination": "database"} ] } ``` 这段 JSON 片段描述了一个简单的 ETL 流程模板,它可以从任意给定起点开始遍历匹配模式下的所有子项,接着按照预设规则解释其语义含义最后持久保存到目标仓库面形成可供长期使用的资产记录条目。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值