链接: 吉哥系列故事——恨7不成妻
题意:
如果一个整数符合下面3个条件之一,那么我们就说这个整数和7有关
1、整数中某一位是7;
2、整数的每一位加起来的和是7的整数倍;
3、这个整数是7的整数倍;
求给定区间与7无关的数的平方和。
思路:
- 三个条件都是数位 dp中很好求的条件,但这个题不是求与7无关的数的个数,而是求平方和。
- dp 记忆化的状态还是和普通的一样,维护一个 pos ,数位和对7的余数,以及这个数对7的余数。
- 关键是怎么求平方和,感觉对递归的理解要求挺高的,假设当前选的是第 3 位(字母不太好表示和理解,直接用数字更清楚),并且选的数为 2,假设已经算出来 上一层的平方和为 qs,和为 s .当然还要知道有多少个数满足条件,这个很容易求出来 ,假设是 cnt(还是 2 个吧,15,16,字母实在不好表达) 个。那么可以得到新的平方和为
(200+15)^ 2+(200+16)^ 2
展开 就是2 * 200 ^ 2 +2 * 200 * (15+16) +( 15 ^ 2 + 16 ^ 2 )
可以发现200^2
前的 系数 2 就是 cnt ,(15+16) 是上一层的 s ,( 15 ^ 2 + 16 ^ 2 ) 是上一层的 qs 那么递归可以达到这种效果,和求 cnt 一样,所以 递归 维护三个值 cnt ,s,qs.然后就和普通的数位 dp没有太大区别了。
代码:
#include<iostream>
#include<cstdio>
#include<map>
#include<math.h>
#include<queue>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxn=1e6+7;
const ll mod=1e9+7;
struct node {
ll cnt,sum,qsum;
node():cnt(0),sum(0),qsum(0) {}
node(ll c,ll s,ll qs):cnt(c),sum(s),qsum(qs) {}
} dp[20][8][8];
ll p[23],x[23],T,l,r;
node dfs(int pos,int m,int s,int limit) {
if(pos==-1) {
if(m==0||s==0) return {0,0,0};
return {1,0,0};
}
if(!limit&&dp[pos][m][s].sum!=0) return dp[pos][m][s];
int up=limit ? x[pos] :9;
node ans;
for(int i = 0; i <= up; i ++) {
if(i == 7) continue;
node now= dfs(pos-1, (m*10+i) % 7, (s+i) % 7, limit && x[pos] == i);
ll v= i* p[pos] % mod,vv= v*v % mod;
ans.cnt= (ans.cnt + now.cnt) % mod;
ans.sum= (ans.sum + v*now.cnt % mod + now.sum % mod) % mod;
ans.qsum= (ans.qsum + vv*now.cnt % mod+2*(now.sum)* v % mod+now.qsum) % mod;
}
if(!limit) dp[pos][m][s] = ans;
return ans;
}
ll solve(ll xx){
int pos=0;
while(xx>0){
x[pos++]=xx%10;
xx/=10;
}
node ans=dfs(pos-1,0,0,1);
return ans.qsum % mod;
}
int main () {
p[0]=1;
for(int i= 1; i<= 20; i++) {
p[i]=p[i-1]*10%mod;
}
cin>>T;
while(T--){
cin>>l>>r;
cout<<(solve(r)-solve(l-1)+mod)%mod<<endl;
}
}