10.4.1where语句
#!/usr/bin/env python
-- coding:utf-8 --
比较运算 > < = >= <= != <>
范围筛选
# 多选一 字段名 in (值1,值2,值3)
# 20000,30000,3000,19000,18000,17000
# select * from employee where salary in (20000,30000,3000,19000,18000,17000)
# 在一个模糊的范围里 between 10000 and 20000
# 在一个数值区间 1w-2w之间的所有人的名字
# select emp_name from employee where salary between 10000 and 20000;
# 字符串的模糊查询 like
# 通配符 % 匹配任意长度的任意内容
# 通配符 _ 匹配一个字符长度的任意内容
# 正则匹配 regexp 更加细粒度的匹配的时候
# select * from 表 where 字段 regexp 正则表达式
# select * from employee where emp_name regexp '^j[a-z]{5}'
逻辑运算 - 条件的拼接
# 与 and
# 或 or
# 非 not
# select * from employee where salary not in (20000,30000,3000,19000,18000,17000)
身份运算 - 关于null is null /is not null
# 查看岗位描述不为NULL的员工信息
# select * from employee where post_comment is not null;
查看岗位是teacher且名字是jin开头的员工姓名、年薪
#select emp_name,salary*12 from employee where post='teacher' and emp_name like 'jin%'
#select emp_name,salary*12 from employee where post='teacher' and emp_name regexp '^jin.*'
10.4.2分组group by
#!/usr/bin/env python
-- coding:utf-8 --
分组 group by
select * from employee group by post
会把在group by后面的这个字段,也就是post字段中的每一个不同的项都保留下来
并且把值是这一项的的所有行归为一组
聚合 把很多行的同一个字段进行一些统计,最终的到一个结果
# count(字段) 统计这个字段有多少项
# sum(字段) 统计这个字段对应的数值的和
# avg(字段) 统计这个字段对应的数值的平均值
# min(字段)
# max(字段)
分组聚合
# 求各个部门的人数
# select count(*) from employee group by post
# 求公司里 男生 和女生的人数
# select count(id) from employee group by sex
# 求各部门的平均薪资
# 求各部门的平均年龄
# 求各部门年龄最小的
# select post,min(age) from employee group by post
# 求各部门年龄最大的
# 求各部门薪资最高的
# 求各部门薪资最低的
# 求最晚入职的
# 求最早入职的
# 求各部门最晚入职的
# 求各部门最早入职的
求部门的最高薪资或者求公司的最高薪资都可以通过聚合函数取到
但是要得到对应的人,就必须通过多表查询
总是根据会重复的项来进行分组
分组总是和聚合函数一起用 最大 最小 平均 求和 有多少项
10.4.3having_orderby_limit
#!/usr/bin/env python
-- coding:utf-8 --
having 条件 # 过滤 组
部门人数大于3的部门
select post from employee group by post having count(*) > 3
1.执行顺序 总是先执行where 再执行group by分组
所以相关先分组 之后再根据分组做某些条件筛选的时候 where都用不上
2.只能用having来完成
平均薪资大于10000的部门
select post from employee group by post having avg(salary) > 10000
select * from employee having age>18
order by
# order by 某一个字段 asc; 默认是升序asc 从小到大
# order by 某一个字段 desc; 指定降序排列desc 从大到小
# order by 第一个字段 asc,第二个字段 desc;
# 指定先根据第一个字段升序排列,在第一个字段相同的情况下,再根据第二个字段排列
limit
# 取前n个 limit n == limit 0,n
# 考试成绩的前三名
# 入职时间最晚的前三个
# 分页 limit m,n 从m+1开始取n个
# 员工展示的网页
# 18个员工
# 每一页展示5个员工
# limit n offset m == limit m,n 从m+1开始取n个
10.4.4pymysql模块导入和安装
#!/usr/bin/env python
-- coding:utf-8 --
import pymysql
conn = pymysql.connect(host=‘127.0.0.1’, user=‘root’, password=“123”,
database=‘day40’)
cur = conn.cursor() # 数据库操作符 游标
# cur.execute('insert into employee(emp_name,sex,age,hire_date) ’
# ‘values (“郭凯丰”,“male”,40,20190808)’)
# cur.execute(‘delete from employee where id = 18’)
conn.commit()
conn.close()
conn = pymysql.connect(host=‘127.0.0.1’, user=‘root’, password=“123”,
database=‘day40’)
cur = conn.cursor(pymysql.cursors.DictCursor) # 数据库操作符 游标
cur.execute('select * from employee ’
‘where id > 10’)
ret = cur.fetchone()
print(ret[‘emp_name’])
# ret = cur.fetchmany(5)
ret = cur.fetchall()
print(ret)
conn.close()
select * from employee where id > 10
sql注入风险
10.4.5多表查询
#!/usr/bin/env python
-- coding:utf-8 --
多表查询
# 两张表是怎么连在一起的
# select * from emp,department;
# 连表查询
# 把两张表连在一起查
# 内链接 inner join 两张表条件不匹配的项不会出现再结果中
# select * from emp inner join department on emp.dep_id = department.id;
# 外连接
# 左外连接 left join 永远显示全量的左表中的数据
# select * from emp left join department on emp.dep_id = department.id;
# 右外连接 right join 永远显示全量的右表中的数据
# select * from emp right join department on emp.dep_id = department.id;
# 全外连接
# select * from emp left join department on emp.dep_id = department.id
# union
# select * from department right join emp on emp.dep_id = department.id;
# 子查询
# 找技术部门的所有人的姓名
# 先找到部门表技术部门的部门id
# select id from department where name = '技术';
# 再找emp表中部门id = 200
# select name from emp where dep_id = (select id from department where name = '技术');
# 找到技术部门和销售部门所有人的姓名
# 先找到技术部门和销售部门的的部门id
# select id from department where name = ‘技术’ or name=‘销售’
# 找到emp表中部门id = 200或者202的人名
# select name from emp where dep_id in (select id from department where name = ‘技术’ or name=‘销售’);
# select emp.name from emp inner join department on emp.dep_id = department.id where department.name in (‘技术’,‘销售’);
连接的语法
select 字段 from 表1 xxx join 表2 on 表1.字段 = 表2.字段;
# 常用
# 内链接
# 左外链接
找技术部门的所有人的姓名
# select * from emp inner join department on emp.dep_id = department.id;
±—±----------±-------±-----±-------±-----±-------------+
| id | name | sex | age | dep_id | id | name |
±—±----------±-------±-----±-------±-----±-------------+
| 1 | egon | male | 18 | 200 | 200 | 技术 |
| 2 | alex | female | 48 | 201 | 201 | 人力资源 |
| 3 | wupeiqi | male | 38 | 201 | 201 | 人力资源 |
| 4 | yuanhao | female | 28 | 202 | 202 | 销售 |
| 5 | liwenzhou | male | 18 | 200 | 200 | 技术 |
±—±----------±-------±-----±-------±-----±-------------+
select * from emp inner join department on emp.dep_id = department.id where department.name = ‘技术’
select emp.name from emp inner join department d on emp.dep_id = d.id where d.name = ‘技术’
找出年龄大于25岁的员工以及员工所在的部门名称
select emp.name,d.name from emp inner join department as d on emp.dep_id = d.id where age>25;
根据age的升序顺序来连表查询emp和department
select * from emp inner join department as d on emp.dep_id = d.id order by age;
优先使用连表查询,因为连表查询的效率高
练习
查询平均年龄在25岁以上的部门名
部门名 department表
select name from department where id in (
select dep_id from emp group by dep_id having avg(age)>25
);
员工表
select dep_id,avg(age) from emp group by dep_id;
select dep_id from emp group by dep_id having avg(age)>25;
查看不足1人的部门名(子查询得到的是有人的部门id)
查emp表中有哪些部门id
select dep_id from emp group by dep_id;
再看department表中
select * from department where id not in (???)
select * from department where id not in (select dep_id from emp group by dep_id);
查询大于所有人平均年龄的员工名与年龄
select * from emp where age>(select avg(age) from emp);
查询大于部门内平均年龄的员工名、年龄
select dep_id,avg(age) from emp group by dep_id;
select * from emp inner join (select dep_id,avg(age) avg_age from emp group by dep_id) as d
on emp.dep_id = d.dep_id where emp.age > d.avg_age;
表的关系
#!/usr/bin/env python