使用 HDFS 保存大量小文件

本文讨论了使用HDFS保存大量小文件的缺点,包括NameNode内存压力和MapReduce效率低下。为解决这些问题,文章介绍了Apache Avro作为数据序列化系统,通过将小文件打包成大文件来优化存储。提供了Java代码示例,展示如何将小文件写入Avro格式并从Avro文件中读取内容。
摘要由CSDN通过智能技术生成

使用 使用使用 使用 HDFS 保存大量小文件的缺点:
1.Hadoop NameNode 在内存中保存所有文件的“元信息”数据。据统计,每一个文件需要消耗 NameNode600 字节内存。如果需要保存大量的小文件会对NameNode 造成极大的压力。
2.如果采用 Hadoop MapReduce 进行小文件的处理,那么 Mapper 的个数就会跟小文件的个数成线性相关(备注:FileInputFormat 默认只对大于 HDFS Block Size的文件进行划分)。如果小文件特别多,MapReduce 就会在消耗大量的时间进行Map 进程的创建和销毁。
为了解决大量小文件带来的问题,我们可以将很多小文件打包,组装成一个大文件。 Apache Avro 是语言独立的数据序列化系统。 Avro 在概念上分为两部分:模式(Schema)和数据(一般为二进制数据)。Schema 一般采用 Json 格式进行描述。Avro 同时定义了一些自己的数据类型如表所示:

Avro基础数据类型

类型

描述

模式

null

The absence of a value

"null"

boolean

A binary value

"boolean"

int

32位带符号整数

"int"

long

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值