题目链接
A:暴力kmp,dp计算答案,一个串是循环串当且仅当i%(i-f[i])==0,此时(i-f[i])为最小循环节
B:模拟,注意第二种规则是说,“括号的方向朝着箭头指向的方向”,把“(“当成+1,”)“当成-1,找到前缀和最小的地方,从那里将循环切断即可得到一个必然合法的括号序列
C:树哈希。由于这里数据范围比较小,可以直接用set记录每个节点所有儿子的id.可以看出,两个节点不同意味着要么颜色不同,要么存在儿子不同。因此可以在搞一个 map<pair<int,set>,int> 来存所有不同的节点,可以看出比较一次的复杂度是 O(sizeof(set)) .后面的做法就有很多了,我的方法比较暴力,首先二分答案,然后直接给每个节点一个随几的颜色,dfs的时候,当碰到有相同id的儿子出现时,修改其中一个儿子。修改的方法是暴力去找这棵子树中是否存在一个节点,使得修改这个点的颜色后不会和其他节点产生冲突,如果找不到就返回 false ;
代码虽然能过数据,然而有地方写错了,如果有读者发现还请指正。
D: p和q都不会很大,暴力dp即可
E:可以证明,如果可以合并出来,那么必然可以贪心的按照任意顺序合并出来,因此暴力合并即可
F:dp[i][j]代表分别以i和j作为起点所能产生的最长的平行的街道长度,显然转移的时候可以将i连出去的边和j连出去的边排序之后双指针搞,复杂度就是 O(nm)
G:可以看出,长度超过20的部分都没用,因此可以记录s[i][j]代表第i个字母做2^j之后产生的字符串,快速幂那样写写就好了
H:暴力splay模拟
I:二分答案后,可以看出咖啡馆能修在0.5处就修在0.5处,因此只要求一个最大匹配,最少需要的咖啡馆就是总点数-最大匹配,与p比较一下大小即可
J:编译原理式的模拟,还没有补过
A:
#include<bits/stdc++.h>
using namespace std;
const int Inf=1e9;
char s[5050];
int f[5050];
int dp[5050];
int pre[5050],mul[5050],len[5050];
int ls;
void kmp(char *s)
{
f[0]=f[1]=0;
for(int i=1;s[i];i++)
{
int j=f[i];
while(j&&s[i]!=s[j])j=f[j];
f[i+1]=s[i]==s[j]?j+1:0;
}
}
int main()
{
freopen("decomp.in","r",stdin);
freopen("decomp.out","w",stdout);
scanf("%s",s+1);
ls=strlen(s+1);
for(int i=1;i<=ls;i++)dp[i]=Inf;
dp[0]=0;
for(int i=0;i<ls;i++)
{
kmp(s+i+1);
for(int j=1;j<=ls-i;j++)
{
if(j%(j-f[j])==0)
{
if(dp[i+j]>dp[i]+j-f[j])
{
dp[i+j]=dp[i]+j-f[j];
pre[i+j]=i;
len[i+j]=(j-f[j]);
mul[i+j]=j/(j-f[j]);
}
}
}
}
vector<string>V1;
vector<int>V2;
for(int now=ls;now;now=pre[now])
{
V2.push_back(mul[now]);
string tp;
for(int i=pre[now