day 68

本文主要探讨了数据结构中的哈夫曼树特性,包括其结点数量的奇偶性与带权路径长度的关系;接着讲解了计算机网络中TCP和UDP端口的使用,指出它们可以在同一主机共存;然后介绍了操作系统请求分页存储管理中缺页中断的处理流程;最后,讨论了微指令执行顺序控制的断定方式及其基本思想。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数据结构

1 在下列叙述中,错误的叙述是_ D

A.哈夫曼树是带权路径最短的树,路径上权值较大的结点离根较近

B.哈夫曼树的结点个数不能是偶数

C.给定一组叶结点的权值,构造出的哈夫曼树结构不唯一

D.一棵哈夫曼树的带权路径长度等于其中所有分支结点的权值之和

假设初始结点n个,构造哈夫曼树时会新生成n-1个结点 想加为2n-1所以只能时奇数

权值乘路径长度之和

对于A,带有权值的结点离根越近,该结点的带权路径就越小,对总的带权路径最短起正面作用;

对于B,假定哈夫曼树的度为0、1和2的结点数分别为n0、n1和n2,由于哈夫曼树中不存在度为1的结点,即n1=0,而根据二叉树的性质,n0=n2+1,所以总结点数为n=n0+n1+n2=(n2+1)+0+n2=2n2+1,则可以有结论哈夫曼树的结点数必然是奇数而不是偶数;

对于C,哈夫曼只要求带权路径最短,因此在构造时如果没有特别约定,在每一步两个子树合并时,孰左孰右都是可以的;

对于D,哈夫曼树的带权路径长度的定义是二叉树中所有叶结点的带权路径长度之和。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BoneInscri

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值