力扣 42 场双周赛第四题 得到连续 K 个 1 的最少相邻交换次数

 

主要参考zerotrac题解:

https://leetcode-cn.com/problems/minimum-adjacent-swaps-for-k-consecutive-ones/solution/de-dao-lian-xu-k-ge-1-de-zui-shao-xiang-lpa9i/

 

相似题目:

LCP 24. 数字游戏

https://leetcode-cn.com/problems/5TxKeK/

 

题目描述:

 

思路描述:

首先因为根据nums.length 是10^5 数量级,所以暴力的 O(N^2) 的算法一定是不行的

 

首先若要得到K个连续1的序列——

1. 找到数组中的k个1

2. 找到数组中k个连续的位置

 

假设 1 的位置分别是 p0 ... p(k-1) (pi>pj,i>j)     放的位置是 q,q+1,...,q+k-1

则移动的总次数是W = Σ|(q+i-pi)| = Σ|(pi-i-q)|

 

又因为对于某一个特定的情况来说 pi 和 i 都是定值,我们需要找到一个q值来使上述式子最小

pi' = pi-i , W = Σ|(pi'-q)|

则可以得到当 q 取 {pi'} 的中位数的时候,W 取到最小值

 

取数组f[m] -> f[i] = p  表示 原数组中第i+11 所在的位置索引是 p

-> 设g[m] -> g[i] = f[i]-i;

 

那么我们就可以用一个K大小的滑动窗口来在 {g} 上找到中位数

(

对于中位数的选取时  对于K是偶数时,取左边和右边的对于答案来说是一样的

[g0,g1,g2,g3] 对应的 间隔 - [l1,l2,l3]           

若取g1为中位数 则W1 = l1+l2+l2+l3       

若取g2为中位数 则W2 = l1+l2+l2+l3

是等价的,所以直接取(l+r)/2即可

),

并计算得到答案

 

总结:

最主要的思想:找到一段K的连续序列 两边的1往中间靠拢

利用 滑动数组求解每一段连续K的序列  用前缀和计算交换次序

下面是两段题解中看到的 写的比较清楚的代码以供参考学习

// 来自 waynechen 用户的代码:

class Solution {
public:
    int minMoves(vector<int>& nums, int k) {
        if(k == 1) return 0;
        vector<int> ind;//保存值为1的下标
        for(int i = 0; i < nums.size(); i++){
            if(nums[i] == 1) {
                ind.push_back(i);
            }
        }

        // 得到f[m]

        int n = ind.size();
        int left = 0, right = k - 1;
        int min = (left + right) / 2;
        int res = 0;
        for(int i = left; i <= right; i++){
            res += abs(ind[min] - (min - i) - ind[i]);
        }// 因为每次移了一个后,中间的左右边界都会变化
        int ans = res;
        while(right < n - 1){
            res -= (ind[min] - ind[left]);
            if(k % 2 == 0){
                res -= ind[min + 1] - ind[min];
            }
            res += ind[right + 1] - ind[min + 1];
            if(res < ans) {ans = res;}
            left++;
            right++;
            min++;
        }
        return ans;

    }
};

 

//来自 zerotrac2 用户的代码:

class Solution {
public:
    int minMoves(vector<int>& nums, int k) {
        if (k == 1) {
            return 0;
        }
        
        int n = nums.size();
        vector<int> g;
        vector<int> sum = {0};
        int count = -1;
        for (int i = 0; i < n; ++i) {
            if (nums[i] == 1) {
                ++count;
                g.push_back(i - count);
                sum.push_back(sum.back() + g.back());
            }
        }
        
        // 得到 g[m] 和 g[m]的前缀和 sum[m]
        
        int m = g.size();
        int ans = INT_MAX;
        for (int i = 0; i + k <= m; ++i) {
// 滑动窗口
            int mid = (i + i + k - 1) / 2;
// l = i , r = i+k-1;
            int q = g[mid];
// q 取中位数
// 利用上述的公式更新
            ans = min(ans, (2 * (mid - i) - k + 1) * q + (sum[i + k] - sum[mid + 1]) - (sum[mid] - sum[i]));
        }
        
        return ans;
    }
};

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值