主要参考zerotrac题解:
相似题目:
题目描述:
思路描述:
首先因为根据nums.length 是10^5 数量级,所以暴力的 O(N^2) 的算法一定是不行的
首先若要得到K个连续1的序列——
1. 找到数组中的k个1
2. 找到数组中k个连续的位置
假设 1 的位置分别是 p0 ... p(k-1) (pi>pj,i>j) 放的位置是 q,q+1,...,q+k-1
则移动的总次数是W = Σ|(q+i-pi)| = Σ|(pi-i-q)|
又因为对于某一个特定的情况来说 pi 和 i 都是定值,我们需要找到一个q值来使上述式子最小
令pi' = pi-i , W = Σ|(pi'-q)|
则可以得到当 q 取 {pi'} 的中位数的时候,W 取到最小值
取数组f[m] -> f[i] = p 表示 原数组中第i+1个 1 所在的位置索引是 p
-> 设g[m] -> g[i] = f[i]-i;
那么我们就可以用一个K大小的滑动窗口来在 {g} 上找到中位数
(
对于中位数的选取时 对于K是偶数时,取左边和右边的对于答案来说是一样的
[g0,g1,g2,g3] 对应的 间隔 - [l1,l2,l3]
若取g1为中位数 则W1 = l1+l2+l2+l3
若取g2为中位数 则W2 = l1+l2+l2+l3
是等价的,所以直接取(l+r)/2即可
),
并计算得到答案
总结:
最主要的思想:找到一段K的连续序列 两边的1往中间靠拢
利用 滑动数组求解每一段连续K的序列 和 用前缀和计算交换次序
下面是两段题解中看到的 写的比较清楚的代码以供参考学习
// 来自 waynechen 用户的代码:
class Solution {
public:
int minMoves(vector<int>& nums, int k) {
if(k == 1) return 0;
vector<int> ind;//保存值为1的下标
for(int i = 0; i < nums.size(); i++){
if(nums[i] == 1) {
ind.push_back(i);
}
}
// 得到f[m]
int n = ind.size();
int left = 0, right = k - 1;
int min = (left + right) / 2;
int res = 0;
for(int i = left; i <= right; i++){
res += abs(ind[min] - (min - i) - ind[i]);
}// 因为每次移了一个后,中间的左右边界都会变化
int ans = res;
while(right < n - 1){
res -= (ind[min] - ind[left]);
if(k % 2 == 0){
res -= ind[min + 1] - ind[min];
}
res += ind[right + 1] - ind[min + 1];
if(res < ans) {ans = res;}
left++;
right++;
min++;
}
return ans;
}
};
//来自 zerotrac2 用户的代码:
class Solution {
public:
int minMoves(vector<int>& nums, int k) {
if (k == 1) {
return 0;
}
int n = nums.size();
vector<int> g;
vector<int> sum = {0};
int count = -1;
for (int i = 0; i < n; ++i) {
if (nums[i] == 1) {
++count;
g.push_back(i - count);
sum.push_back(sum.back() + g.back());
}
}
// 得到 g[m] 和 g[m]的前缀和 sum[m]
int m = g.size();
int ans = INT_MAX;
for (int i = 0; i + k <= m; ++i) {
// 滑动窗口
int mid = (i + i + k - 1) / 2;
// l = i , r = i+k-1;
int q = g[mid];
// q 取中位数
// 利用上述的公式更新
ans = min(ans, (2 * (mid - i) - k + 1) * q + (sum[i + k] - sum[mid + 1]) - (sum[mid] - sum[i]));
}
return ans;
}
};