编写代码时会得到一个.py结尾的文件,要想运行执行此文件就需要python解释器。
python解释器的构成及其各部分功能
解释器由一个编译器和一个虚拟机构成,编译器负责将源代码转换成字节码文件,而虚拟机负责执行字节码。
所以,解释型语言其实也有编译过程,只不过这个编译过程并不是直接生成目标代码,而是中间代码(字节码),然后再通过虚拟机来逐行解释执行字节码
个人理解执行过程原理:
执行 python XX.py 后,将会启动 Python 的解释器,python解释器的编译器会将.py源文件编译(解释)成字节码生成PyCodeObject字节码对象存放在内存中。python解释器的虚拟机将执行内存中的字节码对象
转化为机器语言,虚拟机与操作系统交互,使机器语言在机器硬件上运行。运行结束后python解释器则将PyCodeObject写回到pyc文件中。当python程序第二次运行时,首先程序会在硬盘中寻找pyc文件,如果找到,则直接载入,否则就重复上面的过程。
所以我们应该这样来定位PyCodeObject和pyc文件,我们说pyc文件其实是PyCodeObject的一种持久化保存方式。
pyc文件,文件中包含python的magic number(来说明编译时使用的python版本号)、源文件的mtime(使pyc和py文件保持同步)、编译出的code对象。
现存的python解释器的种类:
CPython这个解释器是用C语言开发的,所以叫CPython。在命令行下运行python就是启动CPython解释器。
CPython是使用最广的Python解释器。教程的所有代码也都在CPython下执行。
IPython
IPython是基于CPython之上的一个交互式解释器,也就是说,IPython只是在交互方式上有所增强,但是执行Python代码的功能和CPython是完全一样的。好比很多国产浏览器虽然外观不同,但内核其实都是调用了IE。
CPython用>>>作为提示符,而IPython用In [序号]:作为提示符。
PyPy
PyPy是另一个Python解释器,它的目标是执行速度。PyPy采用JIT技术,对Python代码进行动态编译(注意不是解释),所以可以显着提高Python代码的执行速度。
绝大部分Python代码都可以在PyPy下运行,但是PyPy和CPython有一些是不同的,这就导致相同的Python代码在两种解释器下执行可能会有不同的结果。如果你的代码要放到PyPy下执行,就需要了解PyPy和CPython的不同点。
Jython
Jython是运行在Java平台上的Python解释器,可以直接把Python代码编译成Java字节码执行。
IronPython
IronPython和Jython类似,只不过IronPython是运行在微软.Net平台上的Python解释器,可以直接把Python代码编译成.Net的字节码。