笔记
欢迎一起学习
这个作者很懒,什么都没留下…
展开
-
2021-05-15
从网上看了说pytorch自定义损失函数的几种方法,其他几种就不说了,网上有好的教程说明我就说一下大家最迷惑的 完全自定义损失函数,如果有不对的地方,请及时支出:def my_mse_loss(x, y): return torch.mean(torch.pow((x - y), 2))这个损失函数,为什么可以反向传播,首先经过pytorch 模型处理的结果变量的requires_grad设置为 True,这个属性代表了变量是否需要求导的,默认是不需要的,接下来一段代码...原创 2021-05-15 11:06:28 · 162 阅读 · 2 评论 -
2021-03-14
A simple yet effective baseline for 3d human pose estimation论文的思路讲解(如果有不正确的的地方,请及时指出)原文:A simple yet effective baseline for 3d human pose estimation收录:ICCV2017代码:tensorflow本文章主要是对论文的整个问题解决思路进行一个解析,不是对论文的翻译。非常有幸能读到这篇经典论文,并且对它进行一个分析。主要是从以下几个方面进行分原创 2021-03-14 13:06:47 · 462 阅读 · 0 评论 -
2021-03-14
Semantic Graph Convolutional Networks for 3D Human Pose Regression论文的思路讲解原文:Semantic Graph Convolutional Networks for 3D Human Pose Regression收录:CVPR2019代码:Pytorch文章主要是讲解整个论文的思路部分,不是对论文的翻译。(如果有什么地方写的不对,希望及时指出)文章主要分以下几个部分讲解:一:论文的出发点因为2D和3D三维人体原创 2021-03-14 11:56:10 · 475 阅读 · 0 评论 -
2021-03-11
世界坐标系和相机坐标系的转换在研究3D人体姿态估计的过程中,碰到了坐标系的转换问题,所以深入的研究和分析了一下这个部分的转换过程世界坐标系主要是现实世界相机的位置,一般坐标原点在左相机或者右相机或者两个相机x轴方向的中心位置上面。相机坐标系的坐标原点在光心的位置,Z轴垂直与光心所在平面。所谓坐标系的转换其实也坐标系进行一个平移和旋转,坐标点在另外一个坐标系下的位置问题,本质上面坐标点的位置没有变换,只是点的坐标发生了变化。世界坐标系和相机坐标系的转换问题:首先介绍旋转过程。下图为世界原创 2021-03-11 12:10:57 · 493 阅读 · 0 评论 -
损失函数_激活函数的分类
机器学习-深度学习的知识:监督学习 分类问题,输出是离散的值。 回归问题,输出是连续的值。分类问题损失函数: 针对分类问题,使用的是交叉熵损失函数, 针对回归问题,使用的是MSE和 误差的绝对值引入激活的函数的原因:(激活函数用于隐藏层) 输入X 经过xw+b以后还是线性的,输出都是输入的线性组合,无论引入多少层都是线性的,隐含层的存在没有意义,不能对数据进行很好的拟合。 如果引入激活函数,使神经网...原创 2020-11-06 09:45:04 · 231 阅读 · 0 评论