TextCNN模型原理及理解

1.概要

TEXTCNN是由Yoon Kim在论文(2014 EMNLP) Convolutional Neural Networks for Sentence Classification中提出的,其主要思想是将不同长度的短文作为矩阵输入,使用多个不同size的filter去提取句子中的关键信息(类似于多窗口大小的ngram),并用于最终的分类。

2.网络结构

 

 

输入层:

文本矩阵。

对于文本中的词语可先构建大的词库集,用word2vec进行训练,获取得到每个词语的词向量,所有词向量拼接能够得到对应的文本矩阵。

注意点:

特征:这里用的是词向量表示方式

数据量较大:可以直接随机初始化embeddings,然后基于语料通过训练模型网络来对embeddings进行更新和学习。

数据量较小:可以利用外部语料来预训练(pre-train)词向量,然后输入到Embedding层,用预训练的词向量矩阵初始化embeddings。(通过设置weights=[embedding_matrix])。

(1)static(静态词向量)
使用预训练的词向量,即利用word2

  • 5
    点赞
  • 36
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
以下是一个简单的 TextCNN 模型的代码示例: ```python import tensorflow as tf class TextCNN(object): def __init__(self, sequence_length, num_classes, vocab_size, embedding_size, filter_sizes, num_filters, l2_reg_lambda=0.0): self.input_x = tf.placeholder(tf.int32, [None, sequence_length], name="input_x") self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.dropout_keep_prob = tf.placeholder(tf.float32, name="dropout_keep_prob") l2_loss = tf.constant(0.0) # Embedding layer with tf.device('/cpu:0'), tf.name_scope("embedding"): self.W = tf.Variable(tf.random_uniform([vocab_size, embedding_size], -1.0, 1.0), name="W") self.embedded_chars = tf.nn.embedding_lookup(self.W, self.input_x) self.embedded_chars_expanded = tf.expand_dims(self.embedded_chars, -1) # Convolution + maxpool layer pooled_outputs = [] for i, filter_size in enumerate(filter_sizes): with tf.name_scope("conv-maxpool-%s" % filter_size): # Convolution layer filter_shape = [filter_size, embedding_size, 1, num_filters] W = tf.Variable(tf.truncated_normal(filter_shape, stddev=0.1), name="W") b = tf.Variable(tf.constant(0.1, shape=[num_filters]), name="b") conv = tf.nn.conv2d( self.embedded_chars_expanded, W, strides=[1, 1, 1, 1], padding="VALID", name="conv") # Apply nonlinearity h = tf.nn.relu(tf.nn.bias_add(conv, b), name="relu") # Maxpooling over the outputs pooled = tf.nn.max_pool( h, ksize=[1, sequence_length - filter_size + 1, 1, 1], strides=[1, 1, 1, 1], padding='VALID', name="pool") pooled_outputs.append(pooled) # Combine all the pooled features num_filters_total = num_filters * len(filter_sizes) self.h_pool = tf.concat(pooled_outputs, 3) self.h_pool_flat = tf.reshape(self.h_pool, [-1, num_filters_total]) # Add dropout with tf.name_scope("dropout"): self.h_drop = tf.nn.dropout(self.h_pool_flat, self.dropout_keep_prob) # Final (unnormalized) scores and predictions with tf.name_scope("output"): W = tf.get_variable( "W", shape=[num_filters_total, num_classes], initializer=tf.contrib.layers.xavier_initializer()) b = tf.Variable(tf.constant(0.1, shape=[num_classes]), name="b") l2_loss += tf.nn.l2_loss(W) l2_loss += tf.nn.l2_loss(b) self.scores = tf.nn.xw_plus_b(self.h_drop, W, b, name="scores") self.predictions = tf.argmax(self.scores, 1, name="predictions") # Calculate mean cross-entropy loss with tf.name_scope("loss"): losses = tf.nn.softmax_cross_entropy_with_logits(logits=self.scores, labels=self.input_y) self.loss = tf.reduce_mean(losses) + l2_reg_lambda * l2_loss ``` 注释: - `sequence_length`:句子的最大长度。 - `num_classes`:分类的类别数。 - `vocab_size`:词汇表的大小。 - `embedding_size`:嵌入层的维度。 - `filter_sizes`:卷积核的大小列表。 - `num_filters`:每个卷积核的数量。 - `l2_reg_lambda`:L2 正则化系数。 该模型包括以下步骤: 1. 嵌入层:将输入的整数序列转换为嵌入向量。使用 `tf.nn.embedding_lookup()` 函数查找嵌入矩阵中的对应嵌入向量。 2. 卷积层:使用不同大小的卷积核对嵌入向量进行卷积操作。每个卷积核产生一个特征图,表示在句子中找到的某种模式。 3. 池化层:对于每个特征图,使用 max-pooling 操作来提取最显著的特征。 4. Dropout:在全连接层之前,使用 dropout 操作来减少过拟合。 5. 全连接层:将所有特征图连接起来,然后进行分类。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值