代码随想录(动态规划1)| 509. 斐波那契数 &70. 爬楼梯 & 746. 使用最小花费爬楼梯

动态规划理论基础

文章讲解
视频

概念描述

动态规划,英文:Dynamic Programming,简称DP,如果某一问题有很多重叠子问题,使用动态规划是最有效的。

所以动态规划中每一个状态一定是由上一个状态推导出来的,这一点就区分于贪心,贪心没有状态推导,而是从局部直接选最优的

动态规划五步曲

  1. 确定dp数组(dp table)以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

509. 斐波那契数

很简单的动规入门题,但简单题使用来掌握方法论的,还是要有动规五部曲来分析。
leetcode链接地址
题目链接/文章讲解
视频

 class Solution {
public:
    int climbStairs(int n) {
        if (n <= 1) return n;
        int dp[2];
        dp[1] = 0;
        dp[2] = 1;
        for (int i = 2; i <= n; i++) {
            int sum = dp[0] + dp[1];
            dp[0] = dp[1];
            dp[1] = sum;
        }
        return dp[2];
    }
};
  1. 爬楼梯

本题大家先自己想一想, 之后会发现,和 斐波那契数 有点关系。

leetcode链接地址
文章讲解
视频讲解

class Solution {
public:
   int climbStairs(int n) {
       if (n <= 1) return n;
       int dp[3];
       dp[1] = 1;
       dp[2] = 2;
       for (int i = 3; i <= n; i++) {
           int sum = dp[1] + dp[2];
           dp[1] = dp[2];
           dp[2] = sum;
       }
       return dp[2];
   }
};

746. 使用最小花费爬楼梯

leetcode链接地址
文章讲解
视频讲解

这道题目力扣改了题目描述了,现在的题目描述清晰很多,相当于明确说 第一步是不用花费的。

class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        vector<int> dp(cost.size() + 1);
        dp[0] = 0; // 默认第一步都是不花费体力的
        dp[1] = 0;
        for (int i = 2; i <= cost.size(); i++) {
            dp[i] = min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);
        }
        return dp[cost.size()];
    }
};
//优化空间复杂度
class Solution {
public:
    int minCostClimbingStairs(vector<int>& cost) {
        int dp0 = 0;
        int dp1 = 0;
        for (int i = 2; i <= cost.size(); i++) {
            int dpi = min(dp1 + cost[i - 1], dp0 + cost[i - 2]);
            dp0 = dp1; // 记录一下前两位
            dp1 = dpi;
        }
        return dp1;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值