dijkstra算法(优先队列PriorityQueue)

Dijkstra算法用于解决边权非负的加权有向图中,从指定起点到其他所有点的最短路径问题。通过构建二维图,初始化全为无穷大的距离数组dis,以及记录前驱节点的pre数组,逐步更新最短路径。在建图过程中,双向赋值表示有路径,无路则设为无穷大。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作用:dijkstra算法能够解决边权非负的加权有向图的单起点最短路径问题。也就是说,规定一个起点,就能够得到这个加权有向图中其他点距该起点的最短距离。

数据结构(建图):

 建图:

graph=[[float('inf') for i in range(n)]for j in range(n)] #二维图

for i in range(m):
    a,b,c=map(int,input().split())
    graph[a][b]=c
    graph[b][a]=c

1,数组graph[ ]用于标记这些点的状态,有路就双向赋值,无路就是无穷大(初始化全为无穷大);

2,数组dis[ ],也就是下表中的dv,表示每个点到起点的距离(防止a到b是8,a到c是7再到d是9的情况下,选a到c到d为最短路径的错误情况);

3,附初值时,除了起点自身,其他的点到起点的距离都设为无穷,在实际编程时,可用定义一个很大的数(比如float(‘inf’))作为常量为其赋值;

4,数组pre[ ],也就是下表中的pv,表示引起dv变化的最后一个顶点,也就是以这种路径到达这个点经过的前一个点。

 关于字典graph的一些运用

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值