作用:dijkstra算法能够解决边权非负的加权有向图的单起点最短路径问题。也就是说,规定一个起点,就能够得到这个加权有向图中其他点距该起点的最短距离。
数据结构(建图):
建图:
graph=[[float('inf') for i in range(n)]for j in range(n)] #二维图
for i in range(m):
a,b,c=map(int,input().split())
graph[a][b]=c
graph[b][a]=c
1,数组graph[ ]用于标记这些点的状态,有路就双向赋值,无路就是无穷大(初始化全为无穷大);
2,数组dis[ ],也就是下表中的dv,表示每个点到起点的距离(防止a到b是8,a到c是7再到d是9的情况下,选a到c到d为最短路径的错误情况);
3,附初值时,除了起点自身,其他的点到起点的距离都设为无穷,在实际编程时,可用定义一个很大的数(比如float(‘inf’))作为常量为其赋值;
4,数组pre[ ],也就是下表中的pv,表示引起dv变化的最后一个顶点,也就是以这种路径到达这个点经过的前一个点。
关于字典graph的一些运用