深度学习
文章平均质量分 92
我什么都没有3
这个作者很懒,什么都没留下…
展开
-
focal loss原理及简单代码实现
论文:Focal Loss for Dense Object Detection参考:https://zhuanlan.zhihu.com/p/49981234/目标检测算法可以分为两大类:Two-stage detector 和 One-stage detector。由于像RCNN系列的二阶段检测器拥有region proposal的操作,这类算法可以达到很高的准确率,但是速度较慢。而像YOLO,SSD这样直接回归的检测算法,这类算法速度很快,但是准确率不如前者。作者提出focal loss的出发点也原创 2022-03-25 15:05:31 · 5937 阅读 · 1 评论 -
目标检测 Review
转载自:https://blog.csdn.net/clover_my/article/details/92794719 Object Detection in 20 Years: A Survey Zhengxia Zou, Zhenwei Shi, Member, IEEE, Yuhong Guo, and Jieping Ye, Senior Member, IEEE论文获取:https://arxiv.o转载 2022-02-23 10:28:29 · 1626 阅读 · 0 评论 -
pytorch从零搭建神经网络实现多分类(训练自己的数据集)
简介本文介绍如何使用pytorch搭建基础的神经网络,解决多分类问题。主要介绍了两个模型:①全连接层网络;②VGG11卷积神经网络模型(下次介绍)。为了演示方便,使用了Fashion-Mnist服装分类数据集(10分类数据集,介绍可以去网上搜一下,这里不赘述),也可以在自己的制作的数据集上训练(后面会稍作介绍)。在文章最后会附上完整的可运行的代码。1 全连接层网络全连接层网络包括输入层、隐藏层以及输出层。其中隐藏层中可以包括多个全连接层,理论上可以加无数层,加的越多,网络的深度越深。每个全连接层中可以原创 2021-07-03 20:05:39 · 12399 阅读 · 7 评论