【单调队列】LeetCode1425:带限制的子序列和|2032

文章介绍了如何使用动态规划和单调队列解决LeetCode题目975,即在一个整数数组中找到满足特定条件(相邻元素差不超过k)的非空子序列的最大和。作者通过详细步骤和代码示例展示了如何运用单调队列优化搜索过程。
摘要由CSDN通过智能技术生成

涉及知识点

C++队列、双向队列

题目

给你一个整数数组 nums 和一个整数 k ,请你返回 非空 子序列元素和的最大值,子序列需要满足:子序列中每两个 相邻 的整数 nums[i] 和 nums[j] ,它们在原数组中的下标 i 和 j 满足 i < j 且 j - i <= k 。
数组的子序列定义为:将数组中的若干个数字删除(可以删除 0 个数字),剩下的数字按照原本的顺序排布。
示例 1:
输入:nums = [10,2,-10,5,20], k = 2
输出:37
解释:子序列为 [10, 2, 5, 20] 。
示例 2:
输入:nums = [-1,-2,-3], k = 1
输出:-1
解释:子序列必须是非空的,所以我们选择最大的数字。
示例 3:
输入:nums = [10,-2,-10,-5,20], k = 2
输出:23
解释:子序列为 [10, -2, -5, 20] 。
参数范围
1 <= k <= nums.length <= 10^5
-10^4 <= nums[i] <= 10^4

单调队列

时间复杂度😮(n)
由于是非空子序列,所以一定有结尾。枚举子序列的结尾,对于每个下标i,有以下两种情况:

方式一只有一个元素nums[i]的子系列
方式一以nums[j]结尾的子序列,再加上nums[i]

如果存在以nums[j]结尾的子序列,且其和为正则选择方法二,如果有多个j,取和最大的。

单调队列

vRet[i]是以nums[i]结尾的最大子系列和。
queIndex记录了[0,i) 淘汰以下两类下标:
一,下标小于i-k,从队尾淘汰。
二,j1<j2,且vRet[j1]<=vRet[j2]。淘汰j1。j1能被i选择,则j2也能被选择。而vRet[i2]较大,所以淘汰j1不会影响结果。

代码

核心代码

class Solution {
public:
	int constrainedSubsetSum(vector<int>& nums, int k) {
		m_c = nums.size();
		vector<int> vRet(m_c);
		std::deque<int> queIndex;
		for (int i = 0; i < m_c; i++)
		{
			if (queIndex.size() && (queIndex.front() < i - k))
			{
				queIndex.pop_front();
			}
			const int pre = (queIndex.size() ? vRet[queIndex.front()] : 0);
			vRet[i] = max(0, pre) + nums[i];
			while (queIndex.size() && (vRet[queIndex.back()] <= vRet[i]))
			{
				queIndex.pop_back();
			}
			queIndex.emplace_back(i);
		}
		return *std::max_element(vRet.begin(), vRet.end());
	}
	int m_c;
};

测试用例

template<class T>
void Assert(const T& t1, const T& t2)
{
	assert(t1 == t2);
}

template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{
	if (v1.size() != v2.size())
	{
		assert(false);
		return;
	}
	for (int i = 0; i < v1.size(); i++)
	{
		Assert(v1[i], v2[i]);
	}
}


int main()
{
	vector<int> nums;
	int k;
	{
		Solution sln;
		nums = { 10,2,-10,5,20 },k=2;
		auto res = sln.constrainedSubsetSum(nums,k);
		Assert(37, res);
	}
	{
		Solution sln;
		nums = { -1,-2,-3 }, k =1;
		auto res = sln.constrainedSubsetSum(nums, k);
		Assert(-1, res);
	}
	{
		Solution sln;
		nums = { 10,-2,-10,-5,20 }, k = 2;
		auto res = sln.constrainedSubsetSum(nums, k);
		Assert(23, res);
	}

//CConsole::Out(res);
}

2023年2月版

 class Solution {
 public:
	 int constrainedSubsetSum(vector<int>& nums, int k) {
		 m_c = nums.size();
		 vector<int> indexs, maxs;
		 int iHasDo = 0;
		 for (int i = 0; i < nums.size(); i++ )
		 {
			 const auto& num = nums[i];
			 
			 while ((indexs.size() > iHasDo) && (i - indexs[iHasDo] > k))
			 {
				 iHasDo++;
			 }
			 int iValue = ( maxs.size() ==  iHasDo) ? 0 : maxs[iHasDo];
			 iValue = max(iValue, 0) + num;
			 while ((maxs.size() > iHasDo) && (iValue >= maxs.back()))
			 {
				 maxs.pop_back();
				 indexs.pop_back();
			 }
			 indexs.push_back(i);
			 maxs.push_back(iValue);
		 }
		
		 return *std::max_element(maxs.begin(), maxs.end());
	 }
	 int m_c;
 };

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法C++ 实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

闻缺陷则喜何志丹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值